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Abstract
Apple enforces strict code signing and mandates app distribu-
tion through its official App Store. Nonetheless, unauthorized
apps still spread through sideloading channels. The Ad Hoc
provisioning mechanism, originally designed for developer
testing, has emerged as one such channel. It leverages indi-
vidual developer certificates and user-side signing to enable
unauthorized app installations that bypass Apple’s app review
process. Over time, this practice has evolved into a struc-
tured and prevalent gray-market that connects certificate re-
sale, third-party signing tools, and the distribution of unsigned
.ipa files. In this work, we present the first systematic study
of this market, with a specific focus on its integrated service
operations in China. Through a user-centric data collection
strategy, we identified 3,359 active signing sites for certificate
redemption, reverse engineered 12 signing tools, and obtained
8,216 distributed .ipa entries. Our analyses uncover a multi-
layered certificate circulation model with resale margins up to
3,000% and reveal common tricks that signing tools employ
for code signing. Most distributed apps are modified versions
of legitimate ones, which leverage dynamic library injection
to enable customized features. Such modifications undermine
the security protections that both apps and the system provide
to users, exposing them to risks such as unauthorized actions,
sensitive data exfiltration, and system capability exploitation.
Overall, our findings reveal a mature gray-market that erodes
iOS’s trust model while operating in plain sight, underscoring
the need for targeted interventions from multiple stakeholders.

1 Introduction

iOS is designed as a walled garden, where all apps must be
signed by Apple and distributed through its official App Store.
This trust model is widely regarded as a cornerstone of iOS se-
curity. However, it is not a secret that third-party unauthorized
apps can still be installed outside the App Store, bypassing
Apple’s installation control. The practice known as “sideload-
ing” is prevalent in the iOS ecosystem, anecdotally involving

18.3% of mobile users worldwide [84]. It attracts users by
offering access to apps unavailable in official stores (e.g., porn
apps, gambling apps, or region-restricted apps), but also ex-
poses them to increased risks of malware, spyware, and other
threats [75, 84]. Thus, Apple has long considered sideloading
as a security threat and prohibits its broad use [40].

Despite Apple’s restriction, various sideloading methods
have continued to emerge, often exploiting Apple’s official
testing or internal distribution channels. Prior work [21, 81]
primarily examined the abuse of in-house distribution, where
enterprise developer certificates are misused under the guise
of internal app deployment. However, Apple has recognized
this prevalent abuse and proactively mitigated it through more
frequent certificate revocations [6, 9]. Other channels, includ-
ing TestFlight abuse [33] and TrollStore installation [10],
have also been observed, but their limited persistence and
applicability constrain their widespread adoption.

Against this backdrop, a self-signing sideloading method
based on Apple’s Ad Hoc mechanism has gained increas-
ing adoption, as evidenced by frequent discussions on on-
line forums [32]. Originally designed for testing, the Ad Hoc
mechanism permits app installation only on a limited set of
registered devices, with each app signed using an individ-
ual developer certificate and a provisioning profile bound to
device Unique Device Identifiers (UDIDs). In sideloading
scenarios, this mechanism is repurposed to enable the installa-
tion of arbitrary .ipa packages. Users must first register their
devices under a developer account and then perform code
signing themselves, effectively disguising unauthorized apps
as legitimate test builds. Unlike enterprise certificate abuse,
which distributes pre-signed apps for direct installation, Ad
Hoc sideloading requires users to perform the signing them-
selves, with each installation bound to a specific device. This
peer-to-peer sideloading channel increases stealth, complicat-
ing Apple’s efforts to detect and mitigate such abuse.

Ad Hoc sideloading enables unauthorized app distribution
and relies on three components: a valid developer certificate,
a signing tool, and an unsigned .ipa file. The requirement for
device registration and manual code signing imposes a non-



Single Entry Point

User

Provider

Signing Site
Signing Tool

Credential

Unsigned IPA
Social Media

Unauthorized

iOS App

Sign

Figure 1: The integrated gray-market of Ad Hoc sideloading.

trivial technical barrier. As a result, third-party services have
emerged to supply these components and simplify the side-
loading workflow, forming a gray-market that encompasses
certificate resale, signing services, and app package (.ipa files)
distribution. While such services are often fragmented and
decentralized globally, the Chinese market is characterized by
highly centralized services that integrate all necessary com-
ponents, further reducing the effort of sideloading for users.
Despite sporadic reports [14, 34], illicit activities in the dis-
tribution market remain underexplored. In this context, our
work presents the first systematic study of Ad Hoc sideload-
ing and its gray-market, demystifying the core components
and addressing the following research questions.
• RQ1-Certificate: How are individual developer certificates
traded and abused in the self-signing gray-market?
• RQ2-Signing Tools: What tools are employed for code
signing, and how do they facilitate unauthorized distribution?
• RQ3-Distributed Apps: What types of apps are being
distributed, and what security threats do they present?

To address these questions, we focus on integrated gray-
market services in the Chinese market, which offer a struc-
tured and observable workflow for analysis. We first outline
the typical workflow of the integrated gray-market service
through a preliminary investigation. As illustrated in Figure 1,
users initially contact the provider via social media and then
register their devices by submitting a UDID on the “signing
site”, which serves as the single entry point. The site issues
the corresponding signing credential1 and provides a “signing
tool” that both performs the signing process and hosts repos-
itories of unsigned .ipa files for download. Guided by this
workflow, we adopt a user-centric strategy to collect all the
necessary components for the sideloading process. In total, we
identified 62 signing sites from social media and expanded
this set to 3,359 sites using a passive DNS dataset. From
these sites, we collected distributed signing tools and manu-
ally reverse-engineered 12 samples using IDA Pro [24]. We
further extracted 8,216 .ipa entries and downloaded 2,654 app
packages from repositories bundled with the signing tools.

We conducted a systematic analysis based on these datasets.
For RQ1, we find that the signing sites remain highly active,

1The credential consists of a developer certificate and a provisioning
profile. Within this ecosystem, providers often use “certificate” to denote
both, as the certificate is the core asset and the profile is issued alongside.

recording over 75k DNS resolutions in 92 days. Certificate
abuse has evolved into a multi-layered industry sustained
by organized providers, generating profit margins of up to
3,000%. For RQ2, most third-party signing tools are built
on “zsign” [39] for code signing, with some exploiting iOS
kernel vulnerabilities to bypass signature verification. For
RQ3, the majority of distributed apps are modified versions of
legitimate ones, primarily offering VIP unlocking or ad block-
ing by injecting third-party dynamic libraries. These libraries
modify core functions to manipulate memory and intercept
traffic, introducing risks such as unauthorized actions, data
leakage, and system capability exploitation. Overall, the inte-
grated gray-market substantially lowers the technical barrier
for abusing Ad Hoc sideloading and accelerates unauthorized
iOS app distribution. This not only harms the economic inter-
ests of Apple and official developers but also exposes users
to security and privacy threats. Based on our findings, we
have reported this abuse scenario to Apple and propose three
mitigation strategies targeting different stakeholders.
Contributions. (1) Our work presents the first in-depth study
of iOS Ad Hoc sideloading and its gray-market, identifying
diverse service entry points and distributed unauthorized apps
through a user-centric data collection approach. (2) Our anal-
ysis reveals the illicit circulation of iOS certificates and the
technical design of signing tools, offering insights to support
iOS governance and interventions. (3) In addition, we char-
acterize common modification practices and security risks of
the distributed apps, providing a factual basis for app vendors
to prevent tampering. Collectively, our work improves the un-
derstanding of unauthorized iOS distribution and highlights
potential points of intervention at the ecosystem level.

2 Background

iOS enforces a tightly controlled app distribution model based
on certificate validation [26], with the App Store as the pri-
mary official channel for public access. Despite these restric-
tions, sideloading, which refers to installing apps outside the
App Store, continues to be widely used [49]. The practice
circumvents Apple’s intended distribution controls and de-
stroys the integrity of the iOS trust model. Although Ap-
ple introduced alternative app marketplaces in the European
Union in March 2024 to comply with the Digital Markets Act
(DMA) [5], this remains at an early stage, and sideloading
continues to be prohibited in other regions [40]. This section
provides an overview of the iOS certificate-based signing
mechanism and examines several widely used sideloading
techniques, as a prelude to our study.

2.1 iOS Certificates and Distribution
Certificate-Based Code Signing in iOS. Digital certificates
play a central role in governing the iOS apps lifecycle. To
develop and distribute iOS applications, developers must first



Table 1: Key features of different Apple developer accounts.

Individual Company Enterprise

Annual Fee $99 $99 $299
Require D-U-N-S NO Yes Yes
Team Collaboration No Yes Yes
App Store Yes Yes NO
In-House NO NO Yes
Ad Hoc Yes Yes NO

enroll in the Apple Developer Program, and Apple issues a
digital certificate that binds the developer’s identity to a public
key. Developers also need to generate a provisioning profile
that links the certificate to an App ID, authorized devices (if
applicable), and a set of entitlements, which declare permis-
sions that define app capabilities such as push notifications or
background execution. During compilation, the app is signed
using the developer’s private key, and the resulting signature,
certificate, and provisioning profile are embedded into the app
bundle. Upon installation, iOS verifies the digital signature to
ensure the app originates from an authorized developer and
has not been tampered with. It also enforces the constraints
encoded in the provisioning profile, including entitlements
and device limitations, ensuring that only explicitly permit-
ted capabilities are granted. Through this process, iOS code
signing enforces authenticity, integrity, and strict control over
distribution and execution privileges.
Certificate Types and Distribution Models. Apple provides
two main types of certificates for code signing: “Development
Certificate” for testing on registered devices, and “Distribu-
tion Certificate” for external deployment. Obtaining a Distri-
bution Certificate requires enrolling in the Apple Developer
Program [8], which provides three account types: Individual
($99/year), Company ($99/year), and Enterprise ($299/year).
As summarized in Table 1, account type determines the dis-
tribution certificate and the supported distribution methods.
Individual and Company accounts support App Store distribu-
tion as well as limited external testing through TestFlight and
Ad Hoc, while Enterprise accounts are restricted to in-house
deployment without App Store review.
• App Store Distribution: This is the default public release
model. Apps must be signed with a distribution certificate
and submitted for Apple’s review. Upon approval, they are
published on the App Store and made available to the public.
• TestFlight (Beta) Distribution: TestFlight [35] is Apple’s
official beta testing platform. It allows developers to upload
pre-release builds, invite testers, and collect feedback in real
time. Each uploaded build is available for testing for up to 90
days. Testers participate by installing the TestFlight app and
accessing the test version via an invitation link.
• Ad Hoc Distribution: This method supports limited external
testing by allowing app installation on devices whose UDIDs
are pre-registered in the provisioning profile. The profile con-

Table 2: Common sideloading methods.

Method Mechanism Validity
In-House Enterprise Developer Certificate 1 year

AltStore Free Apple Developer Account 7 days

TestFlight Official Beta distribution 90 days

Jailbreak Root access via iOS vulnerabilities Permanent

TrollStore iOS CoreTrust exploit Permanent

WebClip Web app shortcut Permanent

Ad Hoc Individual Developer Certificate 1 year

trols app access on registered devices and is valid for one year.
Apple permits up to 100 device registrations per developer
account annually [41], with the first 10 approved instantly and
later ones requiring 24–72 hours for review.
• In-House Distribution: This method is intended for internal
app deployment within an organization. It allows companies
to distribute apps directly to employees without App Store
review or device registration, with installation typically via
download links or mobile device management (MDM).

2.2 Known Sideloading Methods
Among all official iOS distribution methods, only the App
Store supports public releases, while others are limited to in-
ternal or testing use. These channels impose strong constraints
but have nevertheless been exploited to enable sideloading.
Based on prior studies [50, 81] and public sources [36], we
listed the common sideloading approaches in Table 2.
• Abuse of In-House Distribution. In-house distribution re-
lies on enterprise certificates, and has been widely misused
for public app distribution [21, 81]. They can be used to sign
arbitrary apps and enable large-scale distribution without re-
quiring App Store approval. By trusting the associated provi-
sioning profile, users can install these signed apps, making the
device appear to belong to the authorized organization. This
method was once common but is now tightly regulated [6, 9].
Nevertheless, users can leverage a custom DNS configuration
to block access to Apple’s certificate verification endpoints
(e.g., ocsp.apple.com, crl.apple.com), thereby bypassing re-
vocation checks and allowing continued use of apps signed
with revoked enterprise certificates.
• Repurposing of Official Testing Channels. Apple’s
testing-oriented mechanisms have been repurposed for side-
loading. Free developer accounts (registered with Apple IDs)
issue short-lived development certificates that allow users to
self-sign .ipa files for installation. This process can be car-
ried out through Apple’s Xcode or third-party utilities such as
AltStore [3], Sideloadly [53], and i4Tool [74]. However, this
method is restricted to three apps per device and each certifi-
cate expires after seven days, requiring frequent re-signing.
TestFlight has likewise been misused to distribute unautho-



rized apps, as its review is less strict than the App Store’s.
• Certificate-Free Sideloading. Beyond official certificates,
some methods bypass Apple’s signature checks entirely. Jail-
breaking exploits iOS vulnerabilities to gain root access, en-
abling unrestricted app installation. While effective, it intro-
duces severe security risks [23,72] and is impractical for most
users. Similarly, TrollStore leverages CoreTrust vulnerabili-
ties to install unsigned apps with persistent validity [10]. This
method is attractive for sideloading but is limited to older
iOS versions. WebClips provide another lightweight way to
bypass the iOS signature checks. By adding home-screen
shortcuts that launch predefined URLs, WebClips can deliver
web-based interfaces that mimic native app behavior without
requiring installation or authentication. This ease of deploy-
ment makes them attractive to malicious actors [50], and they
have been widely abused to distribute gambling, fraud, and
pornographic content [52]. It is easy to deploy but offers
limited functionality since it is not a native app

Although various sideloading methods exist, each has sig-
nificant drawbacks. As another Apple official testing chan-
nel, Ad Hoc distribution has been repurposed and has gained
prominence as a practical sideloading method. Although sup-
ported by both company and individual developer accounts,
it is predominantly enabled through the latter due to minimal
registration barriers. With such certificates, users can self-sign
and install arbitrary .ipa files on registered devices, and this
distribution channel is the primary focus of our study.

3 Gray-Market of Ad Hoc Sideloading

Apple’s Ad Hoc provisioning is originally designed to support
legitimate app testing on registered devices. When repurposed
for unauthorized iOS app distribution, this mechanism gives
rise to a gray-market ecosystem.
Key Actors. Ad Hoc sideloading requires three main com-
ponents: a developer certificate, a signing tool, and the target
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Figure 2: Workflow of the integrated self-signing service.

.ipa file. In the gray-market, these resources correspond to
three key actors, transforming a testing mechanism into a
sideloading channel for unauthorized app distribution.
• Certificate providers. Instead of enrolling in Apple’s offi-
cial developer program, users obtain developer certificates
through third-party providers that operate in violation of Ap-
ple’s developer agreements [7]. Representative providers in-
clude Kravasign [29] and Applep12 [11].
• Signing service providers. In place of the official signing
process via Xcode, third-party services such as IPASign [27]
and AppTesters [12] enable users to perform code signing
through graphical interfaces, avoiding the complexity of man-
ual configuration and command-line operations.
• Unauthorized app providers. This group comprises unof-
ficial developers and underground distributors who supply
unsigned .ipa files through unofficial app stores (e.g., iPAS-
tore [28]) and community platforms (e.g., Discord [19]).
Integration into Single-Entry Services. Conventionally, cu-
rious users have to obtain the required components from
multiple actors for sideloading. Without centralized guidance,
this fragmented workflow imposes considerable complex-
ity, particularly for non-technical users. The technical barrier
gives rise to the integrated services. Although the underlying
gray-market actors operate on a global scale, such integrated
services are most prominently observed in China. In this
model, a single provider unifies the roles of all three actors
into a one-stop service accessed through a single entry point
and offers step-by-step guidance to users. These providers
are typically resellers rather than original app developers, ag-
gregating app resources and bundling them with certificate
resale to deliver end-to-end solutions to users. This stream-
lines installation and fosters the maturation of the gray-market.
Moreover, through promotion on mainstream social media,
these services advertise their ability to provide customized
apps (e.g., modified WeChat), thereby gaining public visibility
and expanding their potential user base.
Typical Workflow. The integrated model offers a practical
perspective for studying the self-signing gray-market. To bet-
ter understand its structure, we conducted an initial explo-
ration from the end-user perspective. Specifically, we actively
interacted with a sample of vendors found on major social
media (i.e., RedNote [38]), and followed their installation
procedure to experience the full process. Based on this, we
summarized a typical operational workflow in Figure 2.

The signing site serves as the single entry point to the inte-
grated gray-market and is promoted on social media to attract
users. The process begins when the user pays for the self-
signing service ( 1⃝) and receives a prepaid code along with
a guideline ( 2⃝). Following the guideline, the user submits
the code and device UDID to the signing site to redeem a
signing credential ( 3⃝). The credential, consisting of a .p12
certificate and a provisioning profile bound to the UDID, is
then returned to the user ( 4⃝). The site also delivers a desig-
nated signing tool pre-signed with the redeemed credential.



This tool not only performs code signing but also embeds a
built-in repository of unsigned .ipa files, allowing users to
download arbitrary unofficial apps ( 5⃝). Finally, the credential
is used to sign the selected apps and install them directly on
the registered device, completing the sideloading ( 6⃝).

4 User-Centric Data Collection Method

Unauthorized iOS apps distributed via Ad Hoc sideloading
are not publicly accessible, making direct web crawling [81]
ineffective. Guided by the operational workflow of the inte-
grated services, we adopt a user-centric, stepwise strategy to
collect relevant data in the gray-market. Starting from social
media platforms, we emulate typical user behavior to identify
widely promoted signing sites, and then collect signing tools
from these sites. The tools typically include pre-configured
software repositories, allowing us to use them as a pivot to
download the distributed apps. An overview of the collection
results is shown in Figure 3. Our analysis focuses on the Chi-
nese market, where integrated services are highly prevalent
and sufficiently consolidated, allowing for representative anal-
ysis. Moreover, such services are not limited to China, and
our work contributes to a broader understanding of Ad Hoc
sideloading (see Section 8.2 for further discussion).

Social Media

62 signing sites 3,359 active signing sitesPassive DNS

2,118 signing tools 12 representative signing tools

14 repositories 8,216 .ipa entries 2,654 .ipa files

Redeem

Sample

Contain

Extract Download

Figure 3: The overview of data collection.

4.1 Discovering Signing Sites
Signing sites serve as the entry point to the self-signing gray-
market. We begin our analysis by collecting such sites, which
form the foundation for subsequent stages of the study.
Original Collection from Social Media. We selected Red-
Note (Xiaohongshu) [38] as our primary data source for iden-
tifying self-signing service providers, as it is one of the most
active text-based social media platforms in China. Using key-
words such as “iOS certificate” and “customized V (WeChat)”,
we manually inspected posts and comments to extract publicly
advertised signing sites. Coverage was expanded via snowball
sampling [62] on related tags (e.g., “mobile customization”,
“Apple certificate”). Through this process, we identified a total
of 62 distinct signing sites.

Reseller-Based Model. During our collection, we observed
that many signing sites shared a common domain pattern,
typically user-defined subdomains under fixed second-level
domains (SLDs) (e.g., rlyzzyq.11wink.cn, fffyyu.11wink.cn).
Front-end code inspection showed that sites with the same suf-
fix cluster communicate with identical backend endpoints for
certificate redemption, which we term as “certificate sites”.
Most certificate sites adopt a “reseller-based” deployment
model (see Figure 11 in Appendix) that simplifies portal cre-
ation and enables large-scale replication. Resellers create
custom portals by registering subdomains under shared SLDs,
where each prefix must contain at least four alphanumeric
characters and exclude reserved terms such as “cert”, “sign”,
or “udid”. This design accounts for the recurring SLDs across
signing sites, as each SLD corresponds to a reseller service
cluster. We therefore generalize this domain pattern to enable
large-scale discovery of additional signing sites.
Passive DNS Expansion. Leveraging the domain pattern
identified, we performed large-scale expansion using passive
DNS data, which records historical DNS resolutions and en-
ables retrospective analysis of domain usage. Given our re-
gional focus, we collaborated with 114DNS, a major Chinese
DNS provider processing 600 billion queries per day [80].
Using signing sites identified from social media as seeds, we
extracted 50 unique SLDs and compiled them into a regular
expression that captures the reseller-based subdomain pattern.
We applied this pattern to passive DNS logs from March to
May 2025, identifying 8,358 candidate signing sites with their
daily aggregated resolution results, including domain (fqdn),
resolution results (rdata), and query counts (request_cnt). To
ensure accuracy, we probed these domains and archived the
source code. Domains lacking UDID collection functionality
were excluded, as device registration is required for signing
sites. This filtering yielded 3,359 active signing sites associ-
ated with 38 SLDs, fewer than the 50 SLDs initially identified,
as some domains had no active subdomains during data collec-
tion. Based on this dataset, we identified all the corresponding
certificate sites and analyzed the provenance of the distributed
certificates. Detailed results are presented in Section 5.

4.2 Sampling Signing Tools

The signing tool is the first unofficial app in the self-signing
chain and provides the core signing functionality. These tools
are typically distributed through signing sites and require
payment for access. However, sites discovered via passive
DNS often lack identifiable vendor information, making it
difficult to associate them with specific sellers for payment.
In addition, ethical constraints prevented us from conducting
large-scale purchases. Consequently, we adopted a sampling
strategy to collect as many distinct tools as possible.

Although we could not obtain all signing tools directly,
we extracted their names from front-end source code and
identified 2,118 unique tool names across 3,359 active sign-



ing sites. Most sites offer at least one custom-branded tool,
whose names and attributes are configured by resellers under
the reseller-based deployment model in certificate sites (see
Figure 11 in Appendix). In addition, two mature products,
All-in-One Sign [2] and Easy Sign [20], are frequently offered
alongside custom-branded tools across signing sites. These
two names dominate the frequency distribution, together ac-
counting for 48.59% of all occurrences and appearing substan-
tially more often than any other. Based on these observations,
our sampling strategy was designed to capture both the dom-
inant tools and a diverse selection of custom-branded tools
customized from different certificate sites.

To implement this strategy, we revisited vendors initially
identified from social media in Section 4.1 and filtered those
whose signing sites appeared in our final dataset. From this
filtered set, we selectively contacted a subset of vendors and
purchased a limited number of signing tools, with the goal
of capturing diversity across tools rather than achieving full
coverage. In total, we acquired 12 signing tools. We further
performed reverse engineering using IDA Pro [24], with a
particular focus on their customized signing implementations.
Detailed results are presented in Section 6.

4.3 Accessing Distributed Apps

Signing tools not only preform code signing, but also bun-
dle repositories of unsigned .ipa apps for users to download.
These repositories are integrated into signing tools via URLs,
which return a JSON manifest containing metadata for multi-
ple apps, including name, version, description, and download
link (see Figure 9 in Appendix). In total, we identified 14
repositories, with some tools linking to multiple sources.

From the extracted repositories, we collected metadata for
8,216 unofficial IPA entries, of which 2,660 contained direct
download links. Entries without links typically require an
additional payment to unlock access. Notably, the distribu-
tion of these links was highly centralized. A single domain
(pan.iosr.cn) hosted 1,220 apps and appeared across multi-
ple repositories. In total, we identified 43 distinct hosting
domains. Over half (25/43) used Alist [1], an open-source
indexing service that facilitates large-scale, unauthenticated
distribution via third-party cloud storage.

Subsequently, we accessed each extracted download link
to retrieve the corresponding .ipa files. Paid entries requir-
ing additional unlocking were excluded, as freely accessible
samples were sufficient for our analysis. Due to link expira-
tion and network inaccessibility, we successfully downloaded
2,654 .ipa files. To characterize these apps, we first analyzed
their declared functionality and intended use based on the
metadata. We then performed reverse engineering to exam-
ine implementation details and potential security risks, with
a focus on injected dynamic libraries (.dylib files). Further
analysis and results are presented in Section 7.

5 Illicit Circulation of iOS Certificates

In this section, we begin with the collected accessible sign-
ing sites to examine the misuse of iOS developer certificates
within the self-signing gray-market (RQ1). By analyzing the
roles and economic incentives of different actors, we reveal
key characteristics of this illicit certificate abuse.

5.1 Practices of Signing Sites
Usage Scale. Our analysis reveals a substantial self-signing
gray-market, with 3,359 active signing sites generating 75,371
DNS resolutions over 92 days (averaging 228.3 sites and
1,508.2 resolutions daily). The temporal trend suggests both
stability and expansion, as shown in Figure 4, with new sub-
domains regularly emerging as independent service interfaces
under the reseller model. Occasional spikes in query vol-
ume and fqdn diversity, notably in late May, likely reflect
short-term promotional campaigns and further underscore
the overall vibrancy of the ecosystem. Moreover, the ecosys-
tem exhibits a long-tail distribution of resolution frequency
(Figure 10 in Appendix). 52.5% (1,764/3,359) were queried
fewer than five times, whereas only 90 domains exceeded
100 queries. The most queried domain, zero.xzin.top, received
4,653 resolutions, indicating concentrated usage alongside
broad participation.

Figure 4: Temporal trend of signing sites and request volume.

Get UDID. Signing sites serve as the entry point to the self-
signing process, requiring users to first extract their device
UDID and then redeem a signing certificate using a prepaid
code. To obtain the UDID necessary for Ad Hoc distribution,
these sites instruct users to download and install a mobile con-
figuration profile that extracts the device UDID and auto-fills
it on the website (see Figure 5). Our source-code analysis
reveals that 98.8% (3,319/3,359) of download links adopt a
centralized format as illustrated in Figure 6, with endpoints
clustered under 41 domains, indicating substantial infrastruc-
ture reuse. All these profiles collect not only UDID but also
sensitive identifiers such as ICCID1 and IMEI2, and upload

1ICCID is short for Integrated Circuit Card Identifier.
2IMEI is short for International Mobile Equipment Identity.



them to third-party servers without explicit disclosure to the
user. Notably, 97.7% of profiles are signed, displaying a green
“Verified” label that boosts user trust (Figure 5). Since iOS
accepts any structurally valid signature, both Apple-issued
certificates and standard SSL certificates can be used for sign-
ing. Additionally, 83.7% (2,810/3,359) of signing sites down-
load an extra .mobileprovision file, which is not necessary for
UDID extraction but is used to trigger a system-level redirect
to the Settings interface, streamlining the user interaction.

Get UDID

Figure 5: Procedures for users to acquire UDID.

https://cdn.duonl.cn/get_udid.php?domain=77xox.tsiaev.top

Configuration Profile Download Link

infrasturcture_domain signing_site_domain

Figure 6: Common format of UDID profile download links.

Redeem for Certificate. After collecting the UDID and a
prepaid code, signing sites forward them to upstream certifi-
cate providers. These backend services create a provisioning
profile with the submitted UDID and return it with the devel-
oper certificate, effectively replicating Apple’s provisioning
process. To identify these certificate providers, we extracted
AJAX request endpoints (e.g., url:, $.post(), fetch()) from the
source code of signing sites. This allowed us to systemat-
ically recover the APIs responsible for certificate issuance.
Among the 3,359 signing sites analyzed, 2,454 directly ex-
posed certificate redemption through cross-origin requests
to external domains. The remaining sites concealed this in-
teraction, either through client-side code obfuscation or by
handling certificate redemption on the server side, with fron-
tend requests targeting only internal paths. Focusing on the
observable sites, we identified 28 distinct sites responsible
for certificate issuance, which we refer to as certificate sites.
As illustrated in Figure 12 in the Appendix, the mapping be-
tween signing and certificate sites reveals a highly centralized
structure, with a handful of providers supporting over 135
times as many downstream sites. For example, “Rainbow Site”
(ch.onxg.top) alone supports 843 signing sites, forming the
largest cluster. Notably, a single certificate site may serve
signing sites across multiple SLDs, while signing sites under

the same SLD may rely on different certificate sites. Such
concentration not only explains the rapid expansion of the
market but also points to the presence of organized groups
operating behind the ecosystem.

5.2 Certificate Sites as Central Hubs
To understand the implementation of certificate sites, we man-
ually examined these sites. All observed sites are uniformly
built using the FastAdmin [22] framework and exhibit high
visual and functional similarity. Acting as the central hubs,
these certificate platforms serve as unified backends in the
self-signing services, bridging upstream certificate provision-
ing with downstream service delivery.
On the upstream side, certificate sites interface with Ap-
ple’s provisioning infrastructure to obtain valid signing cre-
dentials required for app signing. Our understanding of this
process was enhanced by a case in which the operator of
developer.iksq.cn publicly released its backend source code.
The code employs an unofficial client library developed by
MingYuanYun1 to interact with Apple’s App Store Connect
API [4], automating the generation of .p12 certificates and
provisioning profiles. This process relies on .p8 authentication
keys, which are private credentials bound to specific Apple de-
veloper accounts and used to authorize programmatic access
to account resources. To enable scalable issuance, certificate
sites maintain pools of such keys across multiple accounts,
assigning certificates in parallel or at random to balance usage
and obscure identifiable binding patterns. Although source
code from other sites was not available, the presence of com-
parable .p8 pools suggests similar implementations.
On the downstream side, certificate sites transform issued
credentials into services by distributing them to users. In ad-
dition, they use these certificates to sign the dedicated signing
tool and provide its download link to users, thereby linking to-
gether the key elements of the sideloading process. The sites
further support rapid expansion through the reseller-based
model introduced in Section 4.1, where operators register sub-
domains under shared SLDs, enabling signing portals to be
launched and replicated at scale. Functionally, the platforms
support device management by associating submitted UDIDs
with their bound certificates. They also provide prepaid code
generation with configurable parameters, such as the warranty
period, which entitles users to free certificate replacement if
the original is revoked within that period.

5.3 Profit Model
Beyond signing sites and certificate sites, upstream developer
account suppliers, downstream social media resellers, and
end users collectively form a multi-layered certificate circu-
lation process, as shown in Figure 7. Officially, issuing an
individual iOS certificate requires enrollment in the Apple

1 https://github.com/myappcloud/appstore-connect-api

https://github.com/myappcloud/appstore-connect-api


Developer Program, which costs $99 USD annually (approxi-
mately RMB 688). In contrast, the multi-layered resale struc-
ture leads to a higher effective cost for end users, as markups
are introduced at successive intermediary layers during cer-
tificate redistribution. In this subsection, we break down the
profit flows across each layer within the resale model.

Buyback 
Services

Certificate Sites

Certificate 
Pool

First Second Third Fourth

End Users

……

Signing Tool

(Code)(UDID)

Signing Sites

ResellersApple Developers

Figure 7: A multi-layered certificate circulation process.

First Layer: Upstream Suppliers. At the top of the
chain, upstream suppliers typically obtain Apple Devel-
oper accounts from real users, with some platforms (e.g.,
www.minclouds.com) explicitly offering buy-back services.
Newly created accounts are commonly purchased for RMB
900–1000. Older accounts (e.g., registered before 2009), ex-
empt from Apple’s current device-binding limits [30], are
reclaimed at higher prices due to their larger device capacity.
Second Layer: Certificate Sites. As mentioned, certificate
sites maintain certificate pools using .p8 keys, often sourced
in bulk from upstream suppliers. Besides using them inter-
nally, these platforms also resell accounts to other operators
for profit. According to available price listings, standard ac-
counts are priced between RMB 2400 and 2800, while older,
unrestricted accounts can reach up to RMB 7500.
Third Layer: Signing Sites. To reduce the technical require-
ments of obtaining credentials via .p8 keys, certificate sites
directly offer ready-to-use .p12 certificates and provisioning
profiles for individual devices and distribute them to down-
stream signing sites. Pricing varies by warranty duration.
For instance, services with no warranty support are typically
priced at around RMB 15 per device, while services with a
330-day warranty are offered at approximately RMB 40.
Fourth Layer: Social Media Resellers. Social media re-
sellers advertise signing services to attract users and often
recruit downstream agencies to expand their reach. They sell
prepaid codes that can be redeemed for signing credentials on
the corresponding signing sites. While these transactions are
nominally framed as certificate purchases, the quoted prices
often reflect bundled services, such as access to curated app
resources. Moreover, as each resale agency introduce addi-
tional markups, prices advertised on social media are often
substantially inflated compared to the actual redemption cost.
According to our survey, the retail prices range from RMB
30–40 for services without warranty and RMB 80–100 for
those offering a 330-day warranty.

Overall, the misuse of Apple developer certificates for self-
signing has fostered a highly profitable gray-market. Although
each certificate is officially limited to 100 iOS devices, re-

laxed enforcement on macOS allows up to 200 devices to
be bound in practice. Accordingly, the cost of binding a de-
vice is approximately RMB 3.4 (688/200). As the certificate
passes through the illicit market, end users often pay 10 to
30 times this amount, leading to profit margins of 900% to
3,000%. While long-term warranty services may occupy more
device slots and slightly increase the actual cost per device,
the system remains highly lucrative, underscoring the strong
economic incentives behind its expansion.

Answers to RQ1: The single-entry service is accessed
through signing sites and remains highly active with sub-
stantial user traffic. Certificate sites acquire developer cer-
tificates programmatically using .p8 keys and distribute
them through signing sites. The involvement of multiple
resale layers results in profit amplification across interme-
diaries. These practices not only violate Apple’s developer
agreement but also fuel the spread of unauthorized apps.

6 Demystifying iOS Signing Tools

Based on the sampling approach described in Section 4.2,
we collected 12 representative samples, including two dis-
tinct versions of All-in-One Sign, two of Easy Sign, and eight
custom-branded tools configured by different certificate sites.
As the first unofficial apps that users must install during the
self-signing process, signing tools serve as a foundation for
signing other apps. In this section, we introduce their core
functionalities and focus on the code signing methods (RQ2).

6.1 Feature Integration

Regardless of their origin or brand, all signing tools integrate
the three essential elements of self-signing, offering usability
features to support the signing and installation process. First,
the tools support certificate management, allowing users to
import signing credentials and view essential details such as
validity (Figure 8a). In practice, these credentials are often
preloaded, as the tool and certificates are typically obtained
from the same signing site. In addition, the tools provide
an app repository that offers direct access to popular apps
for immediate download, eliminating the need to source app
packages manually (Figure 8b). Third, a visual signing inter-
face allows users to configure signing parameters such as app
name, icon, bundle identifier, and dynamic library injection or
removal (Figure 8c). Unlike signing service providers in the
fragmented ecosystems, signing tools uniquely combine code
signing with app distribution in a single interface. Unlike sign-
ing service providers in fragmented ecosystems, signing tools
uniquely combine code signing and app distribution within
a single interface, making them a central and user-friendly
platform for self-signing.
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Figure 8: Core features of a typical signing tool.

6.2 Signing Method

The primary function of signing tools is to perform code sign-
ing. Through reverse engineering, we find that all tools operate
without Apple’s official signing utilities, such as codesign [15]
or Xcode, instead relying on unofficial implementations.
Custom-Branded Tools. Custom-branded signing tools show
strong similarity. 5/8 tools share the same bundle name (“Hill-
MountPlatform”), and follow a fixed-format bundle identifier
(“com.mango<4-digit>.test<4-digit>”), suggesting derivation
from a common template. Moreover, we directly identified
the “zsign” function in all custom-branded signing tools, in-
dicating their reliance on the open-source utility zsign [39].
Instead of invoking the zsign as a command-line tool, these
tools implement signing by embedding its original source
code, including argument parsing, Mach-O binary process-
ing, and CMS (Cryptographic Message Syntax) signature
construction. Zsign mimics Apple’s signing process to gener-
ate valid-looking signatures for iOS runtime checks. It also
forges entitlements.plist to sign arbitrary apps with one valid
provisioning profile, regardless of the App ID. While such
misuse highlights the lack of enforcement in the underlying
signing logic, it is part of zsign’s internal behavior and not
the focus of our study. To further substantiate our observation,
we examined three more samples from other signing sites and
found the same zsign function. This suggests that our analysis
is stabilizing and the custom-branded signing tools are largely
built upon a single technical foundation.
Mature Tools: All-in-One Sign and Easy Sign. Regarding
All-in-One Sign and Easy Sign, both apps have two variants,
a regular and a permanent one. Although the zsign function
is absent in all observed versions, the regular version in each
app implements code signing analogous to zsign, but appears
to be a complete reimplementation in Objective-C. Its code
structure includes custom classes (e.g., “YYYMachO” and
“YYYSignAsset”) that perform tasks such as certificate em-
bedding and entitlements injection, replicating key elements
of the original zsign workflow. In contrast, the permanent ver-

sion in both apps deviates entirely from conventional methods
and bypasses code signing by exploiting the IOHIDFamily
kernel vulnerability (CVE-2022-46689 [16]). As this vulner-
ability is only effective on iOS ≤ 16.2, this version is com-
patible with a limited set of devices. Exploitation grants the
app privileged access comparable to a jailbreak, enabling it to
hijack system apps (e.g., Tips) via vnode replacement and use
Kernel File Descriptor (KFD) techniques to persist as a dis-
guised system app, thereby remaining operational even after
the certificate expires. Once embedded, it establishes a priv-
ileged runtime environment that allows additional unsigned
apps to be freely installed and executed without triggering
Apple’s code signing enforcement.

Answers to RQ2: Third-party tools, mostly derived from
zsign, facilitate code signing in the self-signing gray-
market by replicating Apple’s signing process outside the
official toolchain. Some variants further exploit iOS vulner-
abilities to bypass verification with elevated privileges. By
bundling repositories of unsigned apps and supporting cus-
tomized signing parameters, these tools have become the
backbone of self-signing distribution and provide a fertile
ground for the proliferation of unauthorized iOS apps.

7 Distributed Apps in the Wild

Based on the method in Section 4.3, we collected 8,216 unau-
thorized app entries and downloaded 2,654 IPA files from the
14 app repositories obtained from signing tools. In this sec-
tion, we first provide an overview of the types of these apps,
then examine common modification techniques and highlight
potential security risks (RQ3).

7.1 Categories of Unauthorized Apps
Our analysis of the app types considers all 8,216 collected
IPA entries. Although some entries lack valid download links,
they are still included in our analysis since metadata such as
app names and descriptions remain informative. To classify
the distributed apps, we applied two processing steps.

(1) Name Normalization. Unofficially distributed apps of-
ten follow arbitrary and non-standard naming practices, lead-
ing to multiple variants of the same underlying application.
To support accurate grouping and large-scale analysis, we
normalized app names into a canonical form, referred to as
the “baseapp”. First, names were split using common delim-
iters (e.g., underscores, hyphens, brackets), and non-essential
components such as version numbers or functionality tags
were removed (e.g., “Spotify_8.9.68” → “Spotify”). Then,
using the common modifiers collected from the previous step,
we used regular expressions to strip suffixes from names with-
out explicit delimiters (e.g., “YouTube Pro” → “YouTube”).
Following the above steps, we applied manually defined map-
pings to unify names referring to the same app, accounting



for translations, abbreviations, and rebranded names (e.g., “X”
→ “Twitter”). This process extracted 1,883 unique baseapps
from all 8,216 IPA entries. Among them, 1,023 baseapps
are associated with multiple entries, with the largest groups
corresponding to globally popular apps such as WeChat and
TikTok (see Table 4 in Appendix).

(2) App Store Verification. To assess the origin of these un-
official apps, we queried the iTunes Search API to check
whether each baseapp exists in the official App Store by
name1. We searched four regional stores in order, including
China (CN), the United States (US), South Korea (KR), and
Hong Kong (HK). Priority was given to CN, as the dataset pri-
marily targets the Chinese distribution market. Since the API
supports fuzzy matching, we compared the returned track-
Name with the queried baseapp and manually corrected am-
biguous cases. Based on their presence in the App Store, we
classified the distributed apps into two categories.
• Modified Variants. Among the 1,883 baseapps, 79.6%
(1,498) matched official App Store entries. These baseapps
are dominated by Games (548), Utilities (177), and Photo
& Video (168), together accounting for 59.6% of the total.
The unofficial variants of these baseapps share names with
legitimate apps but are distributed through unofficial chan-
nels, suggesting they are repackaged or modified versions of
official releases. Analysis of corresponding IPA metadata and
App Store search results reveal widespread functional changes.
The most prevalent modifications are VIP unlocking (40.9%)
and ad removal (27.5%), which are relatively general-purpose
changes. Other enhancements include simplified interfaces,
game cheats, and location spoofing. Beyond functional alter-
ations, distribution practices reveal deliberate repackaging
to evade platform controls. Specifically, 569 baseapps that
are unavailable in the Chinese App Store are redistributed to
Chinese users, bypassing regional restrictions [63]. Further-
more, 222 baseapps that were originally paid are circulated
for free through cracked .ipa files. Collectively, these unoffi-
cial variants reflect unmet user demands for broader access,
lower cost, and enhanced functionality, reinforcing a parallel
distribution ecosystem beyond official channels.
• Independent Apps. On the other hand, 385 baseapps had
no corresponding match in the App Store. Excluding cases
where ambiguous naming prevented precise matching, the
corresponding IPA entries appear to be independently dis-
tributed rather than repackaged official apps. These include
self-developed tools (e.g., Cymusic, SourceRead), utilities
for jailbroken devices (e.g., CocoaTop, NathanLR), pirated
streaming apps with adult content, and previously delisted
official apps such as Renren Video and Pocket. Some entries
are unofficial iOS ports of popular apps from Android or
Steam, such as Undertale. These apps are blocked from the
App Store due to policy or copyright issues and are only avail-
able through unofficial channels. Their presence highlights

1Search format: “https://itunes.apple.com/search?term={Baseapp}&country=
{Country}&entity=software&limit=1”

the broader scope of the unofficial iOS distribution ecosystem
and raises legal and ethical concerns.

7.2 Dylib-Based Modification Mechanism

As outlined in Section 7.1, apps distributed through Ad Hoc
self-signing are largely modified versions of legitimate ones.
Comparing file structures with their official counterparts re-
veals that modifications are achieved primarily through addi-
tional dynamic libraries (.dylib files). These injected libraries
enable runtime behavioral changes, offering a flexible and
minimally invasive means of modification. To understand the
implementation and risks of distributed apps, we focus on
dylib-based modifications, which represent the dominant and
technically coherent mechanism in unauthorized app distribu-
tion. While often used to add customized features, dylibs are
also embedded in some standalone apps (e.g., pirated video
apps with dylibs for ad blocking), so our analysis considers
each dylib as an independent unit regardless of host app type.
Dylib Extraction and Analysis. We extracted dylibs from the
app bundle (Payload/*.app/ ) and excluded system libraries,
such as those starting with libswift, focusing on additional
dylibs bundled with unauthorized apps. In total, we got 8,085
third-party dylibs (averaging 3.05 per app) from 2,654 IPA
files. These dylibs correspond to 1,402 unique names and are
primarily used for runtime hooking to alter app behavior. To
examine their hooking logic, we manually reverse engineered
the five most frequent dylibs (Table 5 in Appendix) using IDA
Pro and compared the binaries with radiff2 [31] to account for
name collisions. The top four exhibited high internal consis-
tency (standard deviation σ < 0.1, mean similarity µ > 0.9),
allowing us to directly select one representative instance from
each. In contrast, Tg@TrollstoreMios.dylib, exhibited higher
binary variance across samples (σ = 0.20, µ = 0.65), and
was excluded. We also examined dylibs explicitly associated
with VIP unlocking and ad blocking, the two most common
injected features.

7.2.1 Dylibs for Environment Setup

Our analysis reveals that the top three dylibs are primar-
ily used for environment setup rather than direct feature
cracking. libsubstrate.dylib, the core library of Cydia Sub-
strate, is often bundled into unofficial apps to enable hook-
ing and code injection on non-jailbroken devices. libJailed-
Shim.dylib acts as a compatibility shim, offering place-
holder hooks for Substrate [68], Substitute [42], and Lib-
Hooker [43] to prevent crashes when these frameworks are
absent. Tg@TrollStoreKios.dylib achieves system check by-
pass by intercepting methods in system classes like “NSFile-
Manager” and “CKContainer”, injecting fake container paths
and disabling CloudKit-related initialization routines to evade
entitlement and configuration constraints. These dylibs act
as scaffolding that prepares the environment for subsequent



modifications, and their frequent usage suggests a reusable
strategy in unauthorized app tampering.

7.2.2 Dylibs for VIP Unlocking

VIP unlocking refers to bypassing in-app purchase (IAP)
mechanisms to unlock premium features without actual pay-
ment. Among the 2,654 downloaded apps, 442 explicitly and
solely mentioned VIP cracking in their descriptions. Given
the complexity of reverse engineering, we adopt a qualitative
analysis based on theoretical saturation [60]. We first ran-
domly selected 10 apps from this subset and expanded until
no new methods emerged. In total, we analyzed 15 apps until
saturation, identifying three dominant cracking techniques.
• StoreKit Hooking. This method targets Apple’s in-app pur-
chase (IAP) flow. When the user initiates a purchase, the
dylib intercepts the StoreKit transaction callback and injects a
forged SKPaymentTransaction object marked as “purchased”.
The app accepts this fake transaction as valid, unlocking VIP
content without contacting Apple’s servers. This technique
is commonly implemented by “Store.dylib” (the fourth most
common dylib in our dataset) and is often paired with UI
hooks to hide the real payment interface.
• Local Check Hooking. This method hooks functions that
check the user’s subscription status, such as “isVIP” or “has-
ActiveSubscription”, and forces them to return true. This
tricks the app into unlocking premium features without a
valid subscription. In some cases, it also overrides stored val-
ues in “NSUserDefaults” to persist a fake VIP status. This
approach only bypasses client-side checks and works only in
apps that lack server-side validation.
• Network Response Hooking. This method hooks system
classes such as “NSURLSession” to monitor network traffic.
When it identifies subscription-related requests by matching
keywords like “subscription” or “purchases”, it injects forged
responses in the corresponding callbacks to simulate a valid
VIP state. JSON parsing classes like “NSJSONSerialization”
may also be hooked to modify the response structure.

7.2.3 Dylibs for Ad Blocking

Ad blocking refers to the removal or suppression of in-app
advertisements to improve user experience. Among the down-
loaded samples, 145 apps were modified solely for this pur-
pose. We manually analyzed 13 representative apps until
reaching saturation, identifying three ad blocking methods
targeting different stages of the ad pipeline.
• Network-Level Blocking. This method blocks ads by hook-
ing system methods in “NSURLSession” to intercept ad-
related network traffic. Some implementations replace known
ad URLs with invalid ones, effectively preventing the requests
from reaching ad servers. Others allow the requests to proceed
but intercept the responses and modify them to return empty
data, leaving the app with no content to display.

• SDK-Level Interference. This approach hooks key SDK
methods to disrupt ad loading logic. It targets ad initializa-
tion (e.g., “loadAdDataWithCount”, “setAdManager”), con-
figuration (“setAdSourceModel”, “setAdType”), and validity
checks (“isSDKAd”, “isValid”), preventing the ad module
from launching or rendering. By targeting common control
points, these techniques are broadly compatible with major
ad SDKs and effective across different apps.
• UI-Level Suppression. This method hides ads at the UI level
by hooking system classes like “UIAlertView” or “UIView-
Controller” to block pop-up ads. Other techniques include
accelerating ad playback via the “setRate” method in “AV-
Player”, or shrinking ad views to an invisible size. While
straightforward and non-intrusive, these methods do not block
the underlying ad content or its associated network traffic.

7.3 Security and Privacy Risks

The distribution of unauthorized apps undermines developer
revenues and reduces Apple’s App Store income by diverting
users from official distribution channels. More importantly,
such apps may also introduce security and privacy risks to
end users. To characterize these risks, we first scanned all
8,085 extracted dylibs using VirusTotal [37] and found that
only three were flagged as malicious. This suggests that most
injected components are added to support additional function-
ality rather than to distribute overt malware. However, their
implementation of these functionalities still poses substantial
security risks. The injected dylibs hook into the app process to
tamper with runtime memory, manipulate traffic, and bypass
system controls. These interventions compromise the app
logic and weaken iOS’s security isolation, creating a reusable
attack surface for further abuse. To illustrate how these gen-
eral risks manifest in specific apps, we conducted a case study
of WeChat-specific dylibs, as WeChat contains the largest
number of modified variants (as mentioned in Section 7.1)
and manages highly sensitive user data.
Injected Dylibs in WeChat. In total, we identified 140 down-
loadable WeChat variants, from which we extracted 175
dylibs after deduplication, averaging 18.7 dylibs per variant.
Each injected dylib functions as a plugin that extends app ca-
pabilities. Based on app descriptions and supplemental online
sources, we classified them into five categories, including dis-
play enhancements, social feature extensions, comprehensive
toolkits, plugin management utilities, and stability support
components. The distribution is shown in Table 3, with com-
prehensive toolkits and display enhancements being the most
prevalent. Unlike the single-purpose dylibs analyzed in Sec-
tion 7.2, these dylibs support more complex behaviors and
require broader hook coverage. For instance, PKCWeChat-
Tools.dylib, a common comprehensive toolkit, hooks 132 func-
tions spanning message handling, UI rendering, settings man-
agement, image processing, and payment logic, illustrating
the breadth of such modifications. These large-scale modi-



Table 3: Categories of WeChat dylibs and their distribution.

Category Subcategory Description Dylibs Typical Example Usage

Display Enhancements

UI Theming Customize UI themes, like fonts, icons. 14 ThemeBox.dylib 532

Elements Removal Modif UI components to change layout. 6 WCMyPageInfoCenter.dylib 146

Ad Removal Remove advertisement within WeChat. 7 WeChatNoAd.dylib 19

Social Features

Chat Functionality Add chat-related features, like message filtering. 12 DouTu.dylib 274

Friend Management Hide or fake friend relationships in contact. 4 FakeFollow.dylib 128

Moments Customize Moments features, like post pinning. 3 WCEnableFriendsStar.dylib 10

Comprehensive Toolkits / Bundle multi advanced features. 15 PKCWeChatTools.dylib 540

Plugin Management / Provide user-facing plugin management. 7 wcplugins.dylib 164

Stability Support

Runtime Support Provide basic runtime support. 7 libsubstrate.dylib 161

Integrity Bypass Bypass system integrity mechanisms. 7 WXGetVersion52.dylib 72

Push Notifications Restore system push notifications. 4 WechatPushMsgPage.dylib 49

fications inevitably create security risks, which we further
summarized in the following three threats.
• Perform Unauthorized Behaviors. Injected dylibs effec-
tively bypass WeChat’s built-in restrictions and gain control
over core functionalities. They manipulate app logic to in-
troduce customized features and gain unfair advantages by
modifying wallet balances, spoofing fitness data, or faking
location. These modifications enable cheating behaviors and
undermine app trust assumptions. In addition, some dylibs
directly invoke internal methods to simulate interactions with-
out genuine user involvement and authorization. For example,
they can send messages on behalf of users upon detecting
specific events, automatically join group chats through QR
scanning, or call payment APIs to initiate low-value transac-
tions that silently probe contact relationships. These behaviors
bypass user consent, leading to unauthorized social actions.
• Sensitive Data Access. To support advanced social features
such as message filtering and anti-recall, injected dylibs of-
ten access sensitive user data, including real-time messaging,
WeChat IDs, and contact lists. This access breaks platform
data boundaries and enables the manipulation of private in-
formation, posing significant risks to user privacy and data
integrity. Alarmingly, certain dylibs go further by exfiltrating
data to third-party servers. For instance, xnsp.dylib stealthily
uploads user messages to an external endpoint when triggered
by a special keyword “TTS+”. This mechanism is intended to
provide a text-to-speech (TTS) feature, but ultimately results
in silent and unauthorized transmission of private conversa-
tions. In addition, other dylibs bypass iOS sandbox protec-
tions by recursively modifying file system permissions. This
grants access to restricted directories, undermining the isola-
tion guarantees of the iOS sandbox.
• System Capability Exploitation. Some dylibs extend be-
yond WeChat’s internal logic to exploit iOS system capa-
bilities for unauthorized access. For example, by modifying
“NSUserDefaults” and toggling undocumented flags such as
camenable, they force WeChat to use the native iOS cam-

era interface instead of its built-in camera module. Similarly,
dylibs activate CallKit [25] to present WeChat calls as the
native phone calls, enabling call answering from the lock
screen. When combined with the multitasking camera access
entitlement, WeChat can silently activate the camera and main-
tain call sessions in the background, without user awareness.
These actions bypass WeChat’s permission mechanisms and
iOS runtime protections, granting silent access to sensitive
system features and raising risks of covert surveillance.

In summary, injected dylibs hook into WeChat’s internal
and system methods to provide customized features. While
these may enhance user experience, they break app and system
security boundaries. This not only introduces direct security
and privacy risks but also creates a foothold for further ex-
ploitation. Although WeChat is used as a case study, similar
threats exist in other unofficial apps that rely on similar hook-
ing mechanisms. As with many gray-market apps [57, 61],
users are often unaware of the risks or willingly trade secu-
rity for enhanced functionality, contributing to the continued
growth of this underground ecosystem.

Answers to RQ3: Most apps distributed through the self-
signing market are modified versions of legitimate apps that
rely on dynamic library injection to add customized fea-
tures. Their distribution disrupts the revenue models of iOS
and app developers, while also raising copyright concerns.
Moreover, such modifications bypass system safeguards, in-
troducing security threats such as unauthorized user actions,
data collection, and system capability exploitation.

8 Discussion

Our study reveals the gray-market of Ad Hoc sideloading. It
is sustained by the resale of developer certificates, advanced
unofficial signing techniques, and large-scale app distribution,
forming a mature and well-organized industry. In this section,
we present actionable strategies to curb the continued growth



of the market, and discuss the limitations of our study.

8.1 Mitigation Recommendations

Ad Hoc self-signing distribution undermines the integrity of
the iOS ecosystem, inflicts economic losses on developers,
and exposes users to serious security and privacy risks. While
some official app developers (e.g., Tencent) have adopted re-
active measures such as suspending user accounts [13] to curb
the use of unauthorized apps, current efforts target end users
and neglect issues in the distribution pipeline. Furthermore,
reliance on legitimate Apple-issued certificates, rather than
overtly malicious exploits, blurs the line between normal use
and abuse. Collectively, these factors underscore the urgent
need for stronger, multi-level regulatory intervention. Based
on our findings, we propose the following recommendations.
iOS-Level: Restricting Certificate Abuse. Apple plays a
key role in curbing certificate abuse. Reducing the validity
of Ad Hoc provisioning profiles from one year to a shorter
period (e.g., three months) would raise the cost of misuse
while minimally affecting legitimate testing. In parallel, Ap-
ple should enhance oversight of individual developer accounts,
as it already does with enterprise accounts. For example, pro-
visioning profiles bound to known blacklisted App IDs could
be flagged and revoked. We have already reported our findings
and practical recommendations to Apple, hoping to support
effective mitigation of certificate misuse.
User-Level: Containing the Spread of Illicit Service. User
demand fuels the growth of this ecosystem. To contain such
illicit services, it is essential to raise user awareness of un-
official distribution risks and block their exposure channels,
particularly on social media. Based on our observation, these
services are currently advertised openly without textual ob-
fuscation (e.g., keyword alteration), revealing weak platform
restrictions. To further evade accountability, some vendors
issue disclaimers that the distributed apps are just “for edu-
cational use only” and require users to delete them shortly
after download, thus shifting responsibility for misuse to end
users. These practices underscore the need for stronger con-
tent moderation. Simple keyword-based detection would be
effective, and the domain patterns of signing sites identified
in our study can also support detection.
Developer-Level: Strengthening Integrity Protections. Dis-
tributed apps are predominantly modified through injected
dylib files, a simple and reusable approach that lowers the
barrier for cracking. To prevent tampering and unauthorized
modification, official app developers should adopt effective de-
fensive strategies. Although certain apps implement jailbreak
detection, such measures can be easily bypassed through dy-
namic library hooking, limiting their effectiveness. As a result,
relying solely on client-side mechanisms is inadequate. Crit-
ical logic, such as VIP status and environment verification,
should be handled through server-side validation. In addi-
tion, runtime integrity checks, such as monitoring unexpected

memory changes, are effective against dylib-based tampering.

8.2 Limitations
Drawing on our collected data and analysis results, we gained
a comprehensive understanding of the self-signing gray-
market. Nevertheless, several limitations should be noted.
Geographic Focus. First, our data collection focuses on in-
tegrated self-signing services in China. While similar ser-
vices exist in other regions, they are typically fragmented.
Some sites focus solely on certificate reselling, such as Ap-
plep12 [11], while others provide only IPA files, such as
CyPwn [18]. These services represent elements of the broader
ecosystem but do not provide a unified platform that enables
full-process analysis. We therefore selected the Chinese mar-
ket as it offers a structured and observable workflow for anal-
ysis. Nevertheless, our methodology can be applied to frag-
mented services elsewhere, and the insights gained apply to
Ad Hoc sideloading more broadly.
Coverage of Signing Sites. The discovery of signing sites
serves as the foundation of our dataset, as it directly deter-
mines access to signing tools and distributed apps. While
full coverage is not feasible, the collected data is sufficient to
capture the key structural patterns of the ecosystem. While
our method focuses on reseller-based sites identified through
domain patterns, some self-managed sites with custom do-
mains and direct API integration may be missed. However, as
they share the same backend for certificate redemption, their
effect is confined to scale estimation and does not affect our
analysis results of certificate circulation.
Sampling of Signing Tools. Regarding signing tools, our
sampling strategy balances practical constraints with the need
for diversity. The sample set captures a representative range of
tools and is sufficient to reach analytical saturation, revealing
common patterns in code signing implementations.
Scope of Distributed Apps. Our dataset consists of dis-
tributed apps collected through signing tools, providing suffi-
cient scale for ecosystem-level analysis. While community-
curated repositories (e.g., iappsrepo.github.io) also exist, our
focus is specifically on apps distributed through this self-
signing channel rather than on all unauthorized sideloaded
apps. Moreover, our analysis focuses on dylib-based modifica-
tions. For independent grayware apps, although we examined
the embedded dylibs, their core functionality is typically im-
plemented in heavily obfuscated binaries with heterogeneous
designs, making systematic analysis impractical and thus left
for future work. Nevertheless, our dylib-based analysis re-
veals the key characteristics of the majority of distributed
apps and highlights their significant security risks.

9 Related work

Sideloading has long been a primary security concern for
Apple [40]. Zheng et al. [81] revealed the abuse of enterprise



certificates for sideloading and the misuse of private APIs
in distributed apps. Likewise, Bashan [21] demonstrated the
widespread use of enterprise certificates to distribute unoffi-
cial or even malicious apps. More recently, Guo et al. [50]
measured the underground app distribution on Telegram, doc-
umenting frequently used sideloading methods in the wild,
including TestFlight and WebClips. Hu et al. [52] further ana-
lyzed the abuse of WebClips and showed that they are widely
exploited to disseminate gambling, fraud, and pornographic
content. However, none of these studies address Ad Hoc self-
signing sideloading. This model misuses personal developer
certificates and supports peer-to-peer distribution, making it
difficult for Apple to monitor.
Jailbreak App Ecosystem. Beyond sideloading, jailbreaking
enables the installation of unauthorized iOS applications by
granting elevated system privileges. Amaral et al. [44] noted
that jailbreaking is primarily motivated by users’ desire to
extend device capabilities and achieve greater personalization.
For some highly committed Apple users, it reflects a pursuit
of self-expression and resistance to platform control [56]. As
a result, jailbreak app stores such as Cydia [17] distribute
pirated and modified apps that provide additional capabilities
for users [44]. Despite the lack of formal review, Egele et
al. [48] suggested apps are not necessarily more malicious
than those on the App Store in terms of data usage. How-
ever, other characteristics of modified iOS apps, particularly
their modification methods and intended purposes, remain
largely unexplored. Although jailbreaking and sideloading
rely on different technical mechanisms, they share the same
goal of bypassing iOS restrictions to access unauthorized
apps with enhanced capabilities. Accordingly, the existing
studies on jailbreak ecosystems offer relevant background for
understanding unauthorized app distribution on iOS.
Third-Party App Distribution on Android. Developers on
Android can freely generate and manage their own signing
keys, resulting in an ecosystem where app development and
distribution are less restricted than on iOS. While Google Play
serves as the official app store, third-party markets remain
widespread and officially permitted. Due to the absence of
rigorous security vetting, these markets show a significantly
higher prevalence of malware, fake, and cloned apps than
Google Play [55, 66, 76]. A major driver of this phenomenon
is the widespread practice of app repackaging [58]. Zhou
et al. found that approximately 13% of apps in third-party
markets are repackaged [83]. Repackaging typically involves
modifying an existing APK and re-signing it. Attackers can
embed malicious code into the repackaged app [64] or alter
its original logic to introduce additional functionality such as
game cheating, premium-feature unlocking, or advertisement
suppression [67]. These repackaged variants also tend to re-
quest more permissions than their legitimate counterparts [78],
amplifying security and privacy risks. Beyond repackaging,
Shi et al. [71] identified a growing trend in which Android
malware samples abuse app-virtualization technologies as an

alternative distribution channel. Virtualization frameworks
embed additional code as plugins, allowing malicious logic
to be loaded at runtime and enabling it to evade repackaging-
based detection mechanisms (e.g., [65, 70, 79, 82]). Such
behavior closely resembles the dylib injection observed on
iOS, providing important context for our investigation into
modification practices on iOS.

To our knowledge, no prior work has systematically exam-
ined unauthorized iOS distribution via Ad Hoc self-signing
and its security implications, particularly those arising from
modded apps. Beyond work on app distribution, other re-
search has addressed broader iOS security issues [46, 69, 77],
such as sandbox policy flaws [47] and exposed network ser-
vices [73], which have informed defenses that progressively
reinforced the iOS security design. In this context, our study
complements existing work by highlighting the overlooked
yet practically significant weakness, with the same goal of
strengthening the resilience of the iOS ecosystem.

10 Conclusion

Abuse of Apple’s Ad Hoc provisioning with individual devel-
oper certificates has fostered a covert, integrated gray-market
for unauthorized iOS app distribution. Leveraging its single-
entry structure, our study provides the first systematic analysis
of this ecosystem, revealing the multi-layered certificate circu-
lation, common signing techniques with evasion tactics, and
widespread distribution of modified apps. We further detail
the technical methods used for app modification and the asso-
ciated security risks, including unauthorized actions, sensitive
data exfiltration, and system capability exploitation. These
findings highlight the urgent need for intervention to curb
such unauthorized distribution, and we propose actionable
countermeasures at the platform, developer, and user levels.

Acknowledgments

We would like to thank our shepherd and the anonymous re-
viewers for their insightful comments. This work is supported
by the National Key Research and Development Program of
China (No. 2023YFC3321303), the National Natural Science
Foundation of China (62102218, 62302258).



Ethical Considerations

Our work examined the gray-market iOS sideloading ecosys-
tem using a user-centric data collection approach. Although
our institution does not have an Institutional Review Board
(IRB), we carefully considered ethical guidelines before start-
ing the research to ensure compliance with the Menlo Report’s
principles [54]. Below, we discuss the ethical implications for
each stakeholder and the dual-use considerations.
Stakeholder Analysis The key stakeholders involved in our
research include legitimate app developers, Apple, end users,
and gray-market resellers. Additionally, researchers constitute
an important stakeholder, as the research process itself may
expose them to personal safety risks.

• Apple and legitimate app developers are the most direct
victims of this abusive ecosystem, as it disrupts their legiti-
mate business models and results in financial losses. To avoid
further harm, we did not distribute, reuse, or share any mate-
rials obtained during our measurements. Reverse engineering
was limited to non-legitimate apps and focused solely on
identifying implementation details and security risks, without
reproducing or exploiting their functionality. After complet-
ing the experiments, we reported the identified gray-market
activities to Apple, including our purchasing activities and
the misused developer IDs we obtained, along with suggested
mitigation measures to help address the ongoing abuse.

• End users are both beneficiaries and potential victims
within the ecosystem. While they benefit from the function-
ality of unauthorized apps, they also face associated security
risks. Our measurement does not involve direct interaction
with end users. The passive DNS dataset used in this study
contained no personally identifiable information (PII). Specifi-
cally, fields such as client IP addresses were excluded, thereby
eliminating the risk of disclosing users’ privacy.

• Gray-market resellers are the primary operators in this
ecosystem. While we collected data on various service
providers and their websites, our study focuses on analyz-
ing their operational models rather than identifying individual
actors. We did not collect, nor attempt to infer, any personally
identifiable information about resellers. To mitigate the risk
of unintentionally promoting illegal activities, sensitive data
related to these services (i.e., the signing sites) are only avail-
able upon request, following the practices of prior work [51].

• Researchers, as third-party observers, constitute an im-
portant stakeholder. To mitigate potential risks and safeguard
researcher privacy, we created several new accounts with
fictitious identity information for interactions with service
providers and employed WeChat Pay to purchase the nec-
essary data, which better protects user identity compared to
credit card payments. Additionally, all analysis of acquired
app samples was conducted in controlled sandbox environ-
ments to prevent exposure to potential malicious software.
Dual-Use Considerations Our research involves an inherent
dual-use dilemma. Although we dissected a mature abusive

practice, the analysis may inadvertently facilitate other mali-
cious actors entering the market as resellers or modified app
developers for profit. Additionally, monetary transactions and
interactions with these services necessarily involve limited
financial support to the gray-market.

To reduce these risks, we followed established best prac-
tices from prior work [45, 59]. All purchases were made
strictly for research purposes, and transactions were limited to
the minimum necessary to obtain a representative sample. We
selected services across different price tiers to capture ecosys-
tem diversity. After analyzing several platforms, we found
that additional services exhibited nearly identical operational
patterns, suggesting that further diversity was not needed. As
a result, we limited our study to 12 services, with a total expen-
diture of RMB 500 (≈ USD 70), thereby minimizing financial
support to gray-market operators. This limited engagement,
guided by the public interest, avoided stimulating market ac-
tivity while still enabling meaningful analysis. Additionally,
to avoid unintentionally enabling abuse, we promptly reported
our findings to Apple to alert them to the potential risks and
encourage remedial action. We also restricted access to sensi-
tive materials in our artifact release, including complete lists
of signing sites, collected IPA files, and extracted dylibs, as
such data could otherwise be misused.

Overall, our study minimizes potential negative impacts
on key stakeholders and provides actionable insights to help
them better understand and respond to the underlying risks,
supporting more effective efforts to counter this illicit market.

Open Science

The initial datasets we collected consist of 3,359 URLs of
signing sites, 12 sampled signing tools, and metadata for 8,216
IPA entries, which formed the foundation for our subsequent
analysis. While open artifact dissemination is essential for
transparency and reproducibility, unrestricted release of these
data could inadvertently facilitate such unauthorized distribu-
tion channel and enable malicious actors to exploit the gray-
market as resellers or modified app developers. To balance
transparency with the need to prevent unintended promotion
of the ecosystem, we adopt a tiered artifact-release model.
We provide a public repository 1 containing representative
samples from each data category, as well as some essential
analysis results, to help readers better understand the ecosys-
tem we focus on. We also release the analysis scripts used in
our study, allowing other researchers to reproduce our work-
flow and apply the methodology in different contexts. The
complete datasets are hosted in a restricted-access repository 2.
The data is available upon request for academic research pur-
poses only. To limit the potential for misuse, requesters must
provide a brief description of their intended research use. By

1Public repository: https://zenodo.org/records/17850998
2Restricted-access repository: https://zenodo.org/records

/17846379

https://zenodo.org/records/17850998
 https://zenodo.org/records/17846379
 https://zenodo.org/records/17846379


combining public and restricted access with appropriate vet-
ting of requesters, we responsibly balance the need to prevent
misuse of sensitive data with the goal of supporting open and
reproducible science.
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A Supplementary Charts

Following are some supplementary figures and tables pro-
vided for a better understanding of the paper.

{
"name": "qweather",
"type": 0,
"version": "3.5.16",
"versionDate": "2025-04-03",
“Description": 

"Unlock premium features without login, supports 
certificate installation and desktop widgets.",

"lock": "0",
"downloadURL": 

"https://pan2.iosr.cn/d/%E7%A7%BB%E5%8A%A8%E4%BA%
91%E7%9B%983/ipa/20250330/%E5%92%8C%E9%A3%8E%E
5%A4%A9%E6%B0%94_3.5.16.ipa",

"isLanZouCloud": "index",
"iconURL": 

"https://www.iosr.cn/uploads/logo/2025/03/30/c2fbd38d6b3150f9c
5cd92c7111b03a0.jpg",

"tintColor": "",
"size": "72687288.32"

}

Figure 9: The signing tool integrates the app repository
through URLs, which provide JSON manifests describing
app metadata (illustrated with “qweather” as an example).

Figure 10: Distribution and CDF of the resolution counts
for signing sites (“fqdn” in passive DNS dataset), with the
majority observed fewer than five times.

Table 4: Top 10 baseapps by number of unofficial variants.

Baseapp Bundle ID Numbers

WeChat com.tencent.xin 492

Xiaohongshu com.xingin.discover 141

Douyin com.ss.iphone.ugc.Aweme 100

X com.atebits.Tweetie2 97

TikTok com.zhiliaoapp.musically 91

Soul com.soulapp.cn 74

Kwai com.jiangjia.gif 68

Bilibili tv.danmaku.bilianime 65

Spotify com.spotify.client 65

Youtube Music com.google.ios.youtubemusic 61
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The domain prefix must be no less than 4 characters and 
no more than 10 characters. It can only contain numbers 
and uppercase/lowercase letters. Special characters such 
as cert, tool, udid, sign, cloud, etc. are not allowed. Title

Subdomain Prefix

Website Theme 

Background Picture

Website Icon

Fonts Color

Button Color

Background Color

Subdomain Prefix

Bundle ID

Name

App  Source

Icon

Splash Screen

QQ Group

Contact Information

(1) Create a reseller-based signing site. (2) Configure site information. (3) Set up the associated signing tool.

Figure 11: The key steps of reseller-based deployment model provided by certificate sites. Resellers can quickly set up their own
signing sites under specific subdomain rules and create custom-branded signing tools.

cer.tsud.cn

ch.onxg.top

cert.qaqxy.com

developer.iksq.cn
qiyuec.com
xs.xskja.com
xiaoen.tsuv.cn

yiyi.xjuzi.cn

cert.xlzsz.cn
yy.yanovo.top

11wink.cn

onxg.top

yanovo.top

xjuzi.cn

ioszy.cn

qzyxa.cn

xiaolinq.cn

qiios.cn

Figure 12: Relationship between signing sites (left, aggre-
gated at the SLD level) and their corresponding certificate
sites (right). Only major signing sites are labeled.

Table 5: Top 5 common used third-party dylibs and their
sample dissimilarity distribution.

Dylib Numbers σ1 µ2

libsubstrate.dylib 1217 0.02 0.97

libJailedShim.dylib 272 0.09 0.94

Tg@TrollStoreKios.dylib 196 0.0 1.0

Store.dylib 178 0.0 1.0

Tg@TrollstoreMios.dylib 113 0.20 0.65
1

σ means standard deviation.
2 µ means mean similarity.
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