Analyzing Compliance and Complications of Integrating
Internationalized X.509 Certificates

Mingming Zhang’
Zhongguancun Laboratory
Beijing, China

Jinfeng Guo®
Nankai University
Tianjin, China

Yiming Zhang
Tsinghua University
Beijing, China

zhangmm@mail.zgclab.edu.cn £20000217@gmail.com zhangyiming@tsinghua.edu.cn
Shenglin Zhang Baojun Liu Hanging Zhao
Nankai University Tsinghua University Tsinghua University
Tianjin, China Beijing, China Beijing, China
zhangsl@nankai.edu.cn Ibj@tsinghua.edu.cn zhaohq23@mails.tsinghua.edu.cn

Xiang Li
Nankai University
Tianjin, China
lixiang@nankai.edu.cn

Abstract

The global PKI supports the issuance of Unicerts, which are X.509
certificates that integrate internationalized content such as IDNs
and multilingual text. This integration introduces complexity in
Unicert issuance and usage. Past incidents showed that poor Uni-
code handling can cause security risks, including spoofing and
remote code execution, yet threats specific to PKI and Unicerts re-
main underexplored. This paper presents the first large-scale study
of Unicerts, examining both issuance and parsing compliance. By
analyzing 34.8 million Unicerts from CT logs and 9 mainstream
TLS libraries, we found the PKI ecosystem struggles with adopting
Unicode. On the issuing side, 373 issuers produced 249.3K (0.72%)
noncompliant Unicerts due to weak validation on character ranges,
normalization, and formatting, of which 65.3% arise from publicly
trusted CAs. These issues arise from overly complex standard re-
quirements. On the parsing side, TLS libraries like GnuTLS and
PyOpenSSL exhibited issues in decoding and handling special char-
acters, such as incompatible decoding and improper escaping, which
could lead to incorrect entity extraction or subfield forgery. We
further empirically identified threat surfaces, including user spoof-
ing, CT monitor misleading, and traffic obfuscation. Finally, we
analyzed root causes and proposed recommendations to enhance
Unicert compliance in the global PKI ecosystem.

CCS Concepts

« Security and privacy — Security protocols; - Networks —
Network measurement.

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.
IMC’25, Madison, WI, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1860-1/2025/10

https://doi.org/10.1145/3730567.3764483

Haixin Duan
Tsinghua University
Beijing, China
Quancheng Laboratory
Jinan, China
duanhx@tsinghua.edu.cn

Keywords
PKI; Measurement; X.509 Certificates; Universal Acceptance

ACM Reference Format:

Mingming Zhang, Jinfeng Guo, Yiming Zhang, Shenglin Zhang, Baojun Liu,
Hangqing Zhao, Xiang Li, and Haixin Duan. 2025. Analyzing Compliance
and Complications of Integrating Internationalized X.509 Certificates. In
Proceedings of the 2025 ACM Internet Measurement Conference (IMC °25),
October 28-31, 2025, Madison, WI, USA. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3730567.3764483

1 Introduction

Public Key Infrastructure (PKI) is the security foundation of the
Internet, employing X.509 certificates to bind identities (e.g., host-
names, organizations) to cryptographic keys. To facilitate a truly
multilingual Internet, Universal Acceptance (UA)! initiatives pro-
mote the adoption of internationalized network identifiers, such
as domain names (IDNs) and email addresses, across diverse lan-
guages and scripts [44, 97]. While X.509 certificates already support
IDNs and most Unicode characters [17], the UA readiness of PKI
has remained largely unexamined.

Motivation. Correct processing of identity fields in X.509 certifi-
cates is essential. Ensuring its compliance has been a top priority
over the years [9, 34, 94], as standard violations can lead to distrust
of Certificate Authorities (CAs) by browsers. However, incorporat-
ing Unicode in certificate fields complicates the issuance, parsing,
and validation process, potentially causing usability and security
issues. This complexity also affects scenarios requiring certificate
storing and searching, such as traffic analysis, threat detection, and
Certificate Transparency (CT) monitoring. Real-world incidents
show that improper use of Unicode in certificates can lead to spoof-
ing threats [20, 59, 62, 75], invalid certificate logs [5, 68], and even
remote code execution risks [74]. Moreover, certificates with ille-
gal formats or characters can trigger crashes or bypass certificate

!Universal Acceptance (UA) is a fundamental requirement for a multilingual and
digitally inclusive Internet.

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3730567.3764483
https://doi.org/10.1145/3730567.3764483

IMC’25, October 28-31, 2025, Madison, W1, USA

validation [74, 83]. This highlights the need to analyze interna-
tionalized certificates (Unicerts) for issuance compliance, parsing
accuracy, and potential impacts to assess PKI’s UA readiness.
Research gaps. On the issuance side, previous work has identified
various noncompliance issues [24, 53, 81, 82] and proposed several
certificate linters [6, 32, 80, 88, 96], but primarily focuses on regular
field value compliance and overlooks Unicode-specific concerns.
On the validation side, studies assume successful certificate parsing
and focus on the subsequent validation processes [7, 14, 22, 85],
with limited analysis of the parsing mechanisms. Although some
noticed syntax errors [4, 13, 22, 23] in certificates, they still lacked
in-depth analysis of handling Unicode-related fields.

Research questions. This study aims to assess the current UA-
readiness in PKI systems and provide recommendations to the
security community. Our research questions include: (RQ1) Have
CAs issued Unicerts in compliance with standard requirements?
(RQ2) Do TLS implementations parse Unicerts according to nor-
mative constraints? (RQ3) What are the impacts of noncompliant
issuance and parsing flaws?

Our study. We conducted the first large-scale measurement and em-
pirical study of Unicerts. For RQ1, we employed RFCGPT [89, 90],
an established custom GPT pretrained on ~2K RFCs, to extract
Unicode-related constraints for certificates. It helped navigate in-
terdependent and evolving standards, enabling us to generate 95
constraint rules (50 of which have not been covered in existing
studies). We developed a certificate linter equipped with these con-
straints, and applied it to 34.8 million Unicerts from a CT dataset
containing over 70 billion certificates, to quantify real-world is-
suance compliance. For RQ2, we examined TLS implementations to
uncover Unicert parsing anomalies. We constructed test Unicerts
with various Unicode blocks (e.g., CO Controls) and encoding types
(e.g., PrintableString), to check APIs in 9 mainstream TLS libraries.
For RQ3, we empirically explored potential threats of malformed
Unicerts, focusing on scenarios including visualization, CT moni-
toring, and traffic analysis.

Major findings. Achieving an internationalized PKI remains chal-
lenging in issuance and parsing:

For RQ1, we observed that PKI systems have made significant
progress in supporting Unicerts (Section 4). A total of 698 CA orga-
nizations have issued 34.8 million Unicerts, with over 97.6% from
the top 10 CAs (e.g., Let’s Encrypt and Sectigo). However, due to the
complexity of attribute constraints in X.509 certificates, 373 issuers
exhibited three types of noncompliance: improper character checks
(43K certs), lack of value normalization (3 certs), and invalid format
or structure validation (206K certs). Although the CA/B Baseline
Requirements (BRs) regard some of these issues as technically valid,
they nonetheless pose real security risks. While the overall impact
appears low and we found no evidence of real-world exploitation,
these issues can enable specialized attacks, as discussed in Sec-
tion 4.3.1 and Section 4.4. Moreover, both globally prominent CAs
(e.g., DigiCert, Let’s Encrypt) and regional ones (e.g., Czech Post,
DOMENY.PL) were involved, revealing that such practices are wide-
spread. In particular, 65.3% of the identified problematic Unicerts
were issued by publicly trusted CAs. Overall, the Unicode- and
IDN-specific issues remain outside the scope of existing certificate
compliance checks.

Mingming Zhang et al.

For RQ2, we uncovered field decoding and character handling
anomalies in all 9 tested TLS libraries (Section 5). Common decod-
ing issues include incompatible (e.g., Forge decodes UTF8String
with ISO-8859-1) or over-tolerant decoding methods (e.g., GnuTLS
decodes PrintableString with UTF-8), which can cause inconsistent
or incorrect extraction of entity information. Additionally, each
TLS library exhibited at least one violation in handling special char-
acters, such as improper escaping or accepting illegal characters
beyond standard encoding ranges. These issues could enable sub-
field forgery, CRL spoofing, or validation bypass. However, the
practical security risk is low, as the relevant threat models are un-
common and many can be mitigated by current PKI practices, such
as discouraging CN-based hostname validation [9], deprecating
BMPString [17], and replacing revocation checks with the promo-
tion of short-lived certificates [8, 30, 57].

For RQ3, we showed that current noncompliance with Unicode
can impact security and usability. Through empirical study, we re-
vealed some threat surfaces: (i) misleading CT monitors to conceal
specific forged certificates (Section 6.1); (ii) obfuscating certificate-
based traffic analysis in TLS 1.2 and earlier (Section 6.2), and (iii)
spoofing users into trusting unverified websites, though this re-
quires stringent conditions and has limited practical impact (Ap-
pendix F.1).

For stronger mitigation, we responsibly disclosed issues to rele-
vant entities and provided recommendations for the community to
improve compliance when adopting multilingual text in PKI.
Contributions. Our main contributions include:

e We conducted the first systematic study on the Unicert issuance
and parsing compliance.

e We identified three types of noncompliance with the Unicert
issuance requirements and evaluated their prevalence via large-
scale measurements.

o We revealed attribute decoding and Unicode character handling
anomalies in 9 TLS libraries, demonstrating their potential to
cause security and usability problems.

e We provided recommendations and tools to improve Unicert
handling and help establish a global PKI system.

2 Background
2.1 Public Key Certificate Standards

In the PKI ecosystem, many standards govern the issuance of public
key certificates to ensure security and interoperability. The X.509
standard [45] defines the structure and data types of these certifi-
cates. Building on X.509, the Public Key Infrastructure X.509 (PKIX)
group stipulates a series of RFCs that specify Internet-relevant as-
pects of certificate management, such as formats, revocation, and
path validation. At the core of PKIX is RFC 5280 [17], which defines
the standard format for X.509 version 3 certificates used on the In-
ternet. Subsequent updates (e.g., RFC 8399 [41], RFC 9549 [42], and
RFC 9598 [63]) further refine how certificates handle International-
ized Domain Names (IDNs) and Internationalized Email Addresses
(IEAs). Meanwhile, since domain names (DNSNames) often serve as
primary identifiers in certificates, they must conform to syntax and
formatting rules defined by DNS standards like RFC 1034 [65] and
RFC 5890 [52]. In addition, the CA/Browser (CA/B) Forum, com-
prising major browser vendors and CAs, has developed Baseline

Unicert

X.509 Certificate

IMC’25, October 28-31, 2025, Madison, WI, USA

TBSCertificate ¢ i
Signature | Signature
Version Serial Signature | Issuer |Validity| Subject Subject Public Unlqge Extensions Algorithm | - Value
Number Key Info Identifiers
SEQUENCE of L - L SEQUENCE of
DistinguishedName (DN)

4L - | DirectoryName

° -

£ Country (C) PrintableString SMSEAIN () | % OtherName

=z : | AltN IAN

5 StreetAddress (STREET) ToetoSiing ssuerAltName (IAN) z IPAddress | OCTETString
5 CRLDistributionPoints 5]

g = CommonName (CN) o g RFC822Name

20 i = i NameConstraints 0]

‘% c | StateOrProvince (ST) | 173} DU metonstrain DNSName 1A5String
% Organization (O) S BMPSHin AuthoritylnfoAccess (AIA) }UniformResource

% OrganizationUnit (OU)) g SubjectinfoAccess (SIA) Identifier

= 5 ,

&;’) UniversalString

\ Cerificate Fields | | certificate Fields of Concern |

‘ Attribute Data Structure ‘

ASN.1 String Types

Figure 1: X.509 certificate fields, data structures, and encoding types. See detailed descriptions in Appendix B.

Requirements (BRs) [9] based on RFC 5280, ensuring that CA-issued
certificates meet browser and client software requirements.

2.2 X.509 Certificates

Certificate encoding. An X.509 certificate is defined using ASN.1
(Abstract Syntax Notation One), a formal language for specifying
data structures used in encoding and decoding [46, 47]. One of
the standard encoding rules applied to certificates is DER (Distin-
guished Encoding Rules), a strict and deterministic binary format of
ASN.1 that guarantees unambiguous data representation. In DER,
each ASN.1 object is encoded as a TLV (Tag, Length, Value) triplet.
Specifically, the Tag indicates the type of ASN.1 string used (e.g.,
PrintableString, IA5String, and UTF8String [76]); the Length defines
the number of bytes in the content; and the Value carries the actual
data, encoded according to the string type in Tag. Importantly, each
ASNL.1 string type has its own standard character sets and encoding
rules. For clarity, we summarize the ASN.1 string types relevant to
this paper in Table 8 (Appendix B).

Certificate fields. Each X.509 certificate includes three main com-
ponents: TBSCertificate, Signature Algorithm, and Signature Value
(Figure 1). The TBSCertificate (to-be-signed certificate) contains
mandatory fields like Issuer, Subject, and extensions defining the
certificate’s intended usage and validation parameters. Among these
fields, CommonName (CN) and SubjectAltName (SAN) are most
commonly used to identify entities via domain names, IP addresses,
email addresses, or uniform resource identifiers (URIs). In addition
to identity, certain extensions play a critical role in certificate valida-
tion. For example, CRLDistributionPoints specifies where to retrieve
certificate revocation lists, and AuthorityInfoAccess (AIA) provides
information for accessing the issuing CA’s certificate. These ele-
ments collectively support robust trust and validation mechanisms
in public key infrastructures.

Data structures in certificates. A certificate includes various
complex data structures. Key structures of certificate fields in-
clude GeneralName (GN), an ASN.1 type supporting identifiers like
DNSName, RFC822Name, and IPAddress. Another core structure is
DistinguishedName (DN), which identifies entities like issuers and
subjects using a sequence of RelativeDistinguishedNames (RDNs).

Each RDN holds one or more attribute type-value pairs, with some
values encoded as DirectoryString types (e.g., UTF8String, Print-
ableString). The DirectoryName option in GeneralName embeds
a full DN, while other forms like RFC822Name and DNSName en-
code email addresses and domain names using IA5String. These
data structures collectively support rich identity representation and
flexible naming in X.509 certificates.

2.3 Terminology

The standard terms related to PKI and X.509 certificates are provided
in Appendix B. We define several key terms used throughout this
work as follows:

Non-PrintableASCII characters: All characters beyond the stan-
dard printable ASCII range of U+0020~U+007E, including control
codes, multilingual scripts, and other Unicode blocks.

Unicert: X.509 certificates that contain internationalized con-
tents, such as IDNs, IEAs, and internationalized resource iden-
tifiers (IRIs), or multilingual text with characters beyond the
standard printable ASCII set.

IDNCert: The Unicerts containing IDNs in certificate fields.
Compliance / Noncompliance: Cases that adhere to or violate
specified standards or requirements (e.g., RFCs, CA/B BRs).

o Misissuance: The issuance of a certificate in violation of the
rules set forth by the CA/B Forum, typically involving improper
validation that results in certificates for unauthorized parties or
with incorrect information.

2.4 Related Work

X.509 certificate measurement. The adoption of X.509 certificates
has been widely studied. Prior studies have measured widespread
misconfigurations of certificates, e.g., hostname mismatches and
untrusted certificates, across websites, IoT, and email services [25,
26, 39]. These issues, along with shared certificate usage, can enable
attacks such as hostname validation bypass and traffic hijacking [27,
37, 71]. However, these studies did not cover Unicert deployment
in the shift toward internationalized PKI.

IMC’25, October 28-31, 2025, Madison, W1, USA

Certificate compliance. Early work by Delignat-Lavaud et al. em-
phasized the detection of CA/B compliance to improve certificate
issuance [24]. Motivated by emerging reports of noncompliance
or errors in CAs [81, 82], Kumar et al. developed Zlint to identify
noncompliant certificates, discussing the historical misissuance
landscape [53]. Over the years, the community has developed vari-
ous certificate checking linters [6, 32, 80, 88, 96] for ensuring better
issuance. However, these efforts aren’t explicitly focused on Uni-
code handling and Unicert compliance.

Certificate parsing and validation. Much research has examined
implementation flaws in certificate validation [7, 14, 22, 85], pri-
marily focusing on hostname matching and chain-of-trust verifica-
tion. These studies typically assume successful certificate parsing,
overlooking the correctness of the parsing process itself. While
some research has modeled ASN.1 parsing logic to develop accu-
rate parsers [22, 23] and others have identified flaws in mainstream
certificate parsers by mutating ASN.1 tree structures [13], they have
not addressed the parsing of Unicerts with Unicode attributes and
internationalized contents like IDNs.

3 Methodology

This study investigates whether the issuance and parsing of Unicert
are compliant with current standards. This section first outlines our
method for analyzing standard constraints and measuring Unicert
issuance compliance, then details how we test parsing anomalies
in general-purpose TLS libraries for assessing the potential impli-
cations of noncompliance.

3.1 Unicert Compliance Analysis

Assessing Unicert compliance requires understanding standard re-
quirements across all certificate fields. Given the diverse field types
and application scenarios, the requirements for Unicerts depend
on prerequisites or references to external standards (e.g., RFC 5280
depends on DNS standards like RFC 1034), making comprehensive
standard extraction necessary. This involves two key challenges:
Challenge 1: Extract normative constraints from multiple
standards that are intricate and interdependent. First, the
content specified in a standard would be continually updated and
refined by new standards. For example, RFC 5280 defines rules
for encoding core certificates, while updates like RFC 6818 specify
details such as internationalized email addresses. Second, a standard
may cross-reference other domain-specific standards. For instance,
RFC 1034 defines the DNSName format, referenced in RFC 5280.
The CA/B BRs further build on the structure established by RFC
5280. We must consider these iterative updates and references to
extract normative constraints.

Challenge 2: Deal with complex formats, structures, and en-
coding rules of X.509 certificate fields expressed in various
representations. Most requirements are written in natural lan-
guage, while some are defined in ASN.1 using nested data structures
and encoding types (e.g., UTF8String). These encoding types spec-
ify valid character ranges for fields, which can vary by context.
For example, CAs typically encode DirectoryString with Printa-
bleString or UTF8String, except when issuer fields use other encod-
ings or when issuing certificates to existing subjects [17]. Although
IA5String is equivalent to the ASCII range, it is restricted to include

Mingming Zhang et al.

only [a-zA-Z0-9.-] in the context of DNSName. Understanding how
these expressions correspond in context is essential for extracting
accurate constraints.

3.1.1 Analyzing specifications. Emerging pretrained Large Lan-
guage Models (LLMs) have proven effective at analyzing natural
language specifications [29, 48, 64, 99]. With sufficient background,
LLMs can interpret context-dependent rules and nested structural
constraints across various representations like natural languages,
ASNL.1 structures, and tables. To address the challenges of standard
analysis, we employed RFCGPT [89, 90], a specialized GPT-4-based
tool pretrained on ~2K RFCs and well-equipped to navigate complex
requirements. We used it to analyze standards related to certificate
profiles, including PKIX specifications (RFC 3280, 5280), their up-
dates (RFC 9549, 9598, 6818), references (RFC 3490, 1034, 3454),
dependent standards (RFC 6125, IDNA suites), and CA/B BRs. The
analysis process involves:

Step I: Extracting relevant standards and incorporating refer-
ences to reflect their evolution and interdependencies. We filtered
field-related sections from the desired documents using a set of
specified keywords?. We then refined the filtered sections by incor-
porating references from other specifications (e.g., domain name
formats in RFC 1034) and replacing the outdated sections with up-
dates from newer RFCs (e.g., replacing “Section 7.3” of RFC 5280
with “Update to RFC 5280, Section 7.3” in RFC 6818).

Step II: Improving LLM comprehension of background knowl-
edge. Inspired by a prior background-augmentation method [61],
we incorporated the refined sections as background knowledge to
enhance RFCGPT’s understanding of Unicert. Since CA/B BRs are
not in RFCGPT’s pretraining data, we added their certificate profile
content as supplemental knowledge. All knowledge was extracted
as line-based text and placed in the “background context” fields of
the prompt templates (Figure 6, Appendix C). For example, rules
listed in tables were reformatted into comma-separated lines.

Step III: Prompting the LLM to generate certificate field require-
ments. We used few-shot learning [64, 100] to prompt the LLM to
extract two types of requirements for each certificate field: (1) valid
encoding types and data structures, and (2) constraints on encod-
ing and formatting. We excluded semantic constraints like field
presence, absence, or criticality. Prompts included input-output ex-
amples to guide the LLM in generating requirements in a structured
format (e.g., JSON), and directed it to reply “No” when standards
lacked relevant details, avoiding fabrication. The prompt templates
are detailed in Appendix C.

Our LLM-based approach generates 95 constraint rules for the
data structures, encoding types, and valid character ranges for 36
Unicode-related fields. Through manual review, we confirmed the
correctness of the identified constraints.

3.1.2 Checking issuance compliance. To assess Unicert issuance
compliance, we built a certificate linter to verify its contents and
format against standard requirements. Among established linters [6,
32, 88, 96], which vary in standards coverage and integration op-
tions (e.g., CLI, APIs), we selected Zlint [96] for its: (1) broad rule

2The keywords we used include ASN.1 encoding types, “encode/decode”, “character”,
“string”, “internationalized”, “Unicode/ASCII/UTF8”, “NFC”, “IDN”, and “IRI".

Unicert

set (594 lints) covering RFC 5280 and CA/B BRs, (2) open-source
and easily extensible Go codebase, and (3) active maintenance.

Since Zlint is not specifically tailored for Unicert compliance, it
includes 45 lints related to character ranges and field structures,
which are limited to direct constraints explicitly defined in standard
documents (e.g., maximum field length, empty values). For the re-
maining 50 constraints identified in Section 3.1.1, we implemented
custom lints within the Zlint framework and added them to the lint
registry accordingly. These new lints handle more nuanced cases.
For example, in internationalized email support, RFC 5280 allows
RFC822Name fields (email addresses) to contain IDNs, but updates
like RFC 9598 [63] restrict RFC822Name to US-ASCII, requiring Smt-
pUTF8Mailbox for non-ASCII local parts and IDNA2008-compliant
LDH labels for domain parts [52].

Notably, Zlint allows customizing issue severity (e.g., warning,
error) per requirement levels defined in standards (e.g., SHOULD,
MUST), helping us effectively assess the impact of noncompliance.
We also assigned effective dates to each lint, specifying the period
during which a rule applies to newly issued certificates, to avoid
retroactively applying new rules to older Unicerts. This approach
makes the detected noncompliant cases a lower bound, since cer-
tificates issued before the effective date may still pose risks if they
remain valid and are not revoked in time.

After implementing the lints, we rebuilt the tool and applied it to
the Unicert dataset we collected (see details in Section 4.1) to iden-
tify noncompliant certificates. The names, sources, and severity of
the employed lints are listed in Appendix D, and the noncompliance
types covered by these lints are analyzed in Section 4.3.1.

3.2 TLS Library Analysis

To assess the potential impact of noncompliant issuance, we tested
parsing issues in 9 general-purpose, open-source TLS libraries that
are widely studied in prior work [7, 22, 23, 85] and offer developer-
friendly certificate parsing APIs. The full lists of the tested libraries
and APIs are detailed in Appendix E. The testing involved (i) gen-
erating test Unicerts and (ii) analyzing parsing compliance for key
fields (i.e., Subject, Issuer, SAN, IAN, AIA, SIA, and CRLDistribu-
tionPoints). During the parsing analysis, we inferred the decoding
methods and character checks based on the parsing results.
Selecting target parsing APIs. Given the complexity of parsing
X.509 certificates, TLS implementations often rely on lower-level
cryptographic libraries (e.g., ASN.1 libraries). We focused on APIs
capable of directly parsing built-in string types, excluding functions
that require custom use of ASN.1 libraries. Hence, we reviewed
relevant source code and documentation of the libraries, selecting
developer-accessible APIs as test targets.

Generating test Unicerts. To uncover parsing anomalies across
APIs, we built a generator to craft diverse test Unicerts, as existing
CT logs lack sufficient variation for corner cases. The generator cre-
ates Unicerts following the three rules: (i) simplify ASN.1 structures
by using one RDN per DN and one attribute per RDN, (ii) generate
random attribute values by inserting special Unicode characters
(e.g., those outside standard ranges), and (iii) mutate only one field
per Unicert while keeping other required fields at normal default,
standard-compliant values (e.g., “test.com” for DNSName).

IMC’25, October 28-31, 2025, Madison, WI, USA

To test how parsing APIs handle special Unicode, we generated
random attribute values by embedding Unicode into preset normal
defaults. Given the large Unicode space, we sampled all characters
from U+0000~U+00FF (due to RFC constraints [51, 98, 102] and
known vulnerabilities [59, 70]), and one character from each of 323
standard Unicode blocks (excluding surrogates) [21]. In addition,
to test decoding behavior during parsing, we also varied attribute
types across all ASN.1 string types permitted in X.509 certificates.
Appendix E outlines the specific ASN.1 string and field types used.
Analyzing parsing compliance. Assessing whether a TLS library
parses Unicerts compliantly involves two questions: (1) Does it
decode Unicode fields using standard methods? (2) Does it handle
special characters according to RFC recommendations [51, 98, 102]?
Due to the complexity of the process, we analyzed how libraries
parse various Unicert fields to infer their decoding methods and
character checks. For each test field, we generated multiple Unicerts
and processed them using the target APIs to obtain parsing results.
Through manual analysis of sampled results, guided by relevant
RFCs [51, 98, 102] and historical CVEs [59, 70], we summarized
five common decoding methods: ASCII, ISO-8859-1, UTF-8, UCS-2,
and UTF-16, and three special character handling modes: character
truncation, character replacement, and character escaping. We then
inferred the decoding method and whether character checks were
applied based on the parsing results. Cases with complete parsing
failures (i.e., no output) were excluded from this inference and
analyzed separately via manual inspection.

Inferring decoding methods. We decoded each Unicert field using
the five common decoding methods. If an API’s parsing results
consistently match one method, we infer that the API uses that
method. However, APIs may additionally process special characters.
For example, the final parsed value would be “test\\x01\\xFF.com”
after character escaping of the decoded value “test\x01\xFF.com”.
To cover such discrepancies, we further applied the three special
character handling modes to the tested Unicerts after the five de-
coding methods, and rechecked whether the API could match them.
If matched, we used that decoding method as the inferred result
and recorded the character checking method for further analysis.

Inferring character checking methods. We then systematically
analyzed TLS libraries’ character-checking methods and parsing
errors, identifying three types of anomalies: (1) Byte sequences that
should have triggered decoding errors were not properly handled.
(2) Parsed characters violated the ASN.1 standard specifications.
(3) Character escaping did not comply with the relevant standard
requirements. We provided an in-depth analysis in Section 5.2.

3.3 Limitations

Our methods have several limitations: (1) The study aims to eval-
uate the Unicert ecosystem rather than deliver a fully automated
tool. Thus, some rules still require manual validation and adjust-
ment, limiting scalability and reproducibility. While LLM-based
and library examination methods help uncover broader compliance
issues, they serve as complementary tools rather than standalone
solutions and still depend on expert oversight. (2) Keyword filtering
for LLM inputs may miss descriptive information not explicitly tied
to those terms, like DN comparison steps in RFC 5280 or table foot-
notes in the BRs. We tried to review the documents to ensure that no

IMC’25, October 28-31, 2025, Madison, W1, USA

information on common fields was omitted. (3) Certain compliance
checking rules depend on certificate issuing history, such as the
use of TeletexString being allowed only for previously established
Subjects. However, the current linter setup operates on a single cer-
tificate at a time and does not support cross-certificate validation,
making it inadequate for such context-sensitive checks. (4) Our
Unicert parsing analysis focuses on general-purpose open-source
libraries, as their accessible code enables precise instrumentation
and in-depth analysis of their handling of certificate fields. Tools
like browsers, IDSes, or email clients often use proprietary parsers,
making them opaque for scalable testing.

4 Compliance of Unicert Issuance

This section investigates Unicert issuance compliance to infer CA
support for internationalized contents (e.g., IDNs, multilingual text)
and reveal the noncompliance landscape and problematic practices.

4.1 Certificate Dataset

Dataset collenction. Our analysis relies on Certificate Trans-
parency (CT) logs, which provide transparency and verifiability for
certificate issuance from the most prominent CAs. We collaborated
with a security company, QiAnXin, which has collected over 70
billion certificates from 16 CT logs [33]. The selected log list is
mainly maintained by Google, which claims to limit the accepted
root certificates according to the trust store [15]. In all CT entries,
about 54.7% are precertificates, which are only used to verify cer-
tificate validity before issuance and should not be deployed [55].
So we filtered out the precertificates by checking their unique CT
Poison extensions, leaving 32 billion regular certificates.

From the regular set, we further extracted 34.8 million leaf cer-
tificates containing characters beyond Printable ASCII (0x20~0x7e)
in any fields or containing IDNs in the DNSName-related fields
(e.g., CommonName and the extensions shown in Figure 1). The CT
dataset includes a substantial number of historical certificates, with
7,621,405 Unicerts remaining valid as of the final analysis month,
April 2025. To assess Unicert compliance over time, we retained all
historical data and assigned effective dates to each checking lint,
enabling evaluation of CA behavior across different periods.
Limitations. The dataset may be biased due to incomplete CT
log coverage and potential loss during data crawling. Additionally,
since the CT program only began in 2015, Unicerts issued before
then may be underrepresented, though they still offer insight into
historical practices. Despite these limitations, the dataset is large
enough to reveal common issues across the ecosystem.

4.2 Unicert Issuance Overview

Unicert support across issuers. The Unicerts in our dataset were
issued by 4,528 CA certificates across 698 issuer organizations (the
IssuerOrganization field), covering 87 trusted CA owners listed in
CCADRB [66]. A few major issuers with organization names of “Let’s
Encrypt” (25.1M), “COMODO CA Limited” (4.8M), and “cPanel, Inc”
(1.3M) account for 89.4% of Unicert issuance, exhibiting an oligopoly
pattern. However, compared to common website certificates [53],
Unicert issuers show greater diversity, with many regional and
national organizations addressing localized needs and supporting

Mingming Zhang et al.

—— All (newly issued) —=— IDNCert (newly issued)

All (alive) —— IDNCert (alive)
—e— Trusted (newly issued) Trusted IDNCert (newly issued)
—— Trusted (alive) —— Trusted IDNCert (alive)

107 SSr—a
& 108 ’/
[
S
S 10 //%(//
2 =
10] _—t
— :
T
£ 108 T ‘ g
o | = /N\ ?!Lﬁ- 06 §
E 10° // .'/ ! ro4 %
é | // % Al =
g 10 7 4/ %Error |- 0.2 §
A A > % Warn g

20 g g g e 0 B B e P @ e ®

Year

Figure 2: Issuance trend of Unicerts and noncompliant
Unicerts (as of April 2025). The alive lines indicate Unicerts
that remain valid in each year. Though a log scale may ob-
scure value differences, it is essential for showing trends
across a wide range.

region-specific scripts, such as “GEANT Vereniging” (215K) and
“DOMENY.PL sp. z 0.0 (49K).

Historical Unicert issuance. Figure 2 shows a clear upward trend
in Unicert issuance. The patterns for all and trusted Unicerts closely
align, as over 97.2% of newly issued Unicerts each year since 2015
have come from trusted CAs>. This reflects growing alignment with
trusted root programs and broader CA adoption. In total, 31,339,050
(90.1%) were historically issued by trusted CA owners. This high
trust rate likely stems from strict CA admission policies enforced
by the CT providers [11, 15, 55]. Moreover, distrusted CAs may
either refrain from CT submission or cease certificate issuance after
losing trust. Accordingly, the following analysis focuses on trusted
Unicerts unless noted otherwise.

4.3 Noncompliant Unicert Landscape

Using our certificate linter on CT-logged Unicerts, we identified
249,281 Unicerts (0.7%) as noncompliant?. Of these, 162,789 (65.3%)
were issued by publicly trusted CAs, while 52,544 (21.1%) were by
providers with limited trust, recognized only in certain regions (e.g.,
governmental CAs), scenarios (e.g., cloud services), or user agents
(e.g., region-specific browsers). To highlight key issues, we first
summarized common issue types, then examined noncompliant
issuance over time.

4.3.1 Noncompliance taxonomy. To better understand the nature
and causes of noncompliant issuance, we classified the noncompli-
ant Unicerts into three types. Table 1 summarizes all types with

3For longitudinal analysis, we treat certificates as trusted if their issuers were trusted
at the time of issuance, ignoring later CA deprecation or acquisition.

4Note that if the effective dates of the certificate lints are ignored, the result increases
to 1.8 million, indicating many certificates issued before the effective dates still have
issues. However, we do not consider them noncompliant in this study.

Unicert IMC’25, October 28-31, 2025, Madison, WI, USA
Table 1: Overview of noncompliance types.
Noncompliance #Lints #NC Unicerts
Types All (New) | NC (New) All lints New lints Error Warning Trusted Recent Alive

T1 | Invalid Character 22 (10) 15 (6) 432K (17 3%) || 26.9K (62.1%) | 42.2K (97.6%) 1.7K (4.0%) 94.7% | 11.6K (26.9%) | 14.6K (33.8%)
T2 | Bad Normalization 4 (3) 1 (1) 3 (0.0%) 3 (100%) 3 (100%) 0 (0.0%) 100.0% 0 (0.0%) 0 (0.0%)
Tllegal Format 17 (0) 8 (0) 3.2K (1.3%) 0 (0.0%) 3.2K (100%) 0 (0.0%) 47.0% 13 (0.4%) 36 (1.1%)
Invalid Encoding 48 (37) 23 (18) || 150.9K (60.5%) || 56.3K (37.3%) | 58.7K (38.9%) | 117.5K (77.9%) 69.7% 12 (0.0%) 114 (0.1%)
T3 [Mnvalid Structure 2 (0) 2 (0) 93.7K (37.6%) 0 (0.0%) 93.7K (100%) 0 (0.0%) 49.0% 1.4K (1.5%) 35K (3.8%)
Discouraged Field 2 (0) 1 (0) 589 (0.2%) 0 (0.0%) 0 (0.0%) 589 (100%) 18.8% 1 (0.2%) 1 (0.7%)

[All I 95 (50) | 50 (25) [2493K (100%) [[83.1K (33.3%) | 183.9K(73.8%) [118,958 (47.7%) | 65.3% | 13.9K (5.2%) | 18.1K (7.3%) |

! NC indidate noncompliance-related.

2“Trusted” indicates globally trusted NC Unicerts; “Recent” refers to those issued in 2024~2025; “Alive” shows those still valid in 2024~2025.
3 Since a Unicert can fail multiple lints, the sum of #Error and #Warning exceeds the number of unique noncompliant Unicerts.
4 Percentages in the “All lints” column are based on all NC Unicerts (249.3K), while other percentages refer to the NC Unicerts within each subtype.

covered lints, severities, affected Unicerts, and trusted rates to high-
light their potential impact. We discuss each type in detail below.
T1. Character range inspection. Some CAs perform inadequate
checks on character ranges for certificate field value, resulting
in (i) malformed strings (e.g., non-printable characters in Printa-
bleString), or (ii) disallowed characters (e.g., control characters) in
UTF8String. We categorized these issues as Invalid Character.
Table 1 shows 22 lints used for this type, identifying 43,240
noncompliant Unicerts, mostly with error-level violations, with
26.9% newly issued and 33.8% valid in 2024~2025. Some (13.9K) in-
clude NUL, ESC, or DEL in Subject attributes, triggering the lint of
subject_dn_not_printable_characters. This type of issue can
hinder the parsing, validation, and display of entity information
for Unicerts. For example, studies showed that NUL byte termina-
tions can cause misinterpretation of CNs during hostname verifica-
tion [49, 85]. Additionally, visual rendering and traffic inspection
based on these fields can be compromised, referring to Section 6.
T2. Field value normalization. Value normalization is essential
for matching distinguished names, particularly during name chain-
ing. It requires UTF-8 strings to use canonical composition form
(NFC) [35, 78], and IDN U-labels (Unicode) to be converted to A-
labels (Punycode) for comparison and storage [17, 42], then back to
Unicode for display. However, some IDN A-labels are malformed, ei-
ther unconvertible to U-labels or containing characters beyond the
domain standard after conversion. This complicates matters since
implementations must convert IDNs to Unicode before display-
ing and comparing certificates. Meanwhile, non-conforming IDNs
introduce the possibility of conversion errors between alternate
forms [63]. We categorized these issues as Bad Normalization.
This type is the least common in our dataset, mainly involving
IDNs not normalized to NFC after converting Punycode to Unicode.
Despite its low frequency, this issue is important, as past vulnera-
bilities showed malformed Punycode email addresses could trigger
buffer overflows and denial-of-service attacks [10, 73].
T3. Field format and structure checks. We classify violations
related to the format or structure of certificate fields into four
subtypes: (1) Illegal Format: basic formatting errors, such as length
overflows or incorrect character cases, which can hinder parsing. (2)
Invalid Encoding: use of unsupported encoding types, e.g., encoding
CN with TeletexString or BMPString instead of IA5String. (3) Invalid
Structure: violations of structural rules, such as required inclusion
(e.g., CN must appear in SAN) or duplicate attributes (e.g., multiple

CNs in Subject). (4) Discouraged Field: use of non-recommended
fields (e.g., CN in Subject or URI in SAN).

Cases involving invalid encoding represent the largest share
(60.5%) of all noncompliant issuances. Notably, 22.6% of noncom-
pliant Unicerts were detected by our new lints, suggesting that
encoding issues of Unicerts have been under-addressed by the com-
munity. Violations of format and structure requirements can disrupt
certificate usability (e.g., causing connection failures) or prevent
accurate identity extraction. For instance, PyOpenSSL (v.24.2.1) se-
lects the first CN, while Go Crypto (v.1.23.0) uses the last when
handling duplicated Subject attributes. In addition, current stan-
dards do not strictly prohibit discouraged attribute types (e.g., CN),
but continued issuance of such certificates by CAs can complicate
entity identification from certificates.

4.3.2 Longitudinal view of noncompliance. Although many Unicerts
are noncompliant, the overall noncompliance rate remains low
(0.7%). Figure 2 shows great improvement in Unicert compliance
since 2015. This trend reflects growing attention to issuance compli-
ance, driven by extensive studies on noncompliance [24, 53, 81, 82],
the enforcement of CT, and the release of certificate linters [6, 32,
80, 88, 96]. Despite this progress, many CAs still engage in noncom-
pliant practices, and the issued Unicerts can be valid until 2050.
Issuers associated with noncompliant Unicerts. All of the iden-
tified noncompliant Unicerts were issued by 2,922 certificates across
505 issuer organizations, covering 78 CA owners in CCADB and
295 untrusted or unknown issuers. We found issuance flaws are
widespread, involving both globally prominent and regional CAs.
Unlike normal Unicerts, noncompliant Unicerts are more evenly
distributed across organizations, showing no clear oligopoly.

Table 2 shows organization names with the most historical non-
compliance. Some publicly trusted issuers also show high rates,
suggesting public trust does not ensure strong Unicert compliance.
This may stem from CA lint tools not yet fully covering the inter-
nationalization requirements. Meanwhile, issuers with over 80%
noncompliance suggest possible systemic issues.

In contrast, the top 10 issuers with the highest Unicert volumes
show low noncompliance, each below 6% and about 2% overall.
Some issuers, such as Let’s Encrypt, Cloudflare, and Amazon, issue
only IDNCerts, likely due to automated domain validation work-
flows that limit field customization (e.g., Let’s Encrypt permits only
DNSNames and filters out non-domain characters). Such constraints
may help reduce noncompliance.

IMC’25, October 28-31, 2025, Madison, W1, USA

Table 2: Top 10 issuer organization names by noncompliant
Unicerts.

Issuer Trust Non-

OrganizationName Status?| Region compliant® Recent*
Ceska posta, s.p. 0 CZ 22,939 (96.39%) 0
Symantec Corporation o Us 18,092 (51.47%) 0
Dreamcommerce S.A. ° PL 17,291 (44.83%) 0
DigiCert Inc () us 17,276 (3.40%) 40
Let’s Encrypt ° US 15,484 (0.06%) 7,091
StartCom Ltd. @) 1L 14,168 (72.97%) 0
COMODO CA Limited) GB 11,870 (0.25%) 0
ZeroSSL ° AT 11,224 (2.53%) 4,094
Government of Korea © KR 10,416 (87.33%) 0
VeriSign, Inc. ° Us 7,513 (59.12%) 0

[Other [- [- 103008 (029%) [1802 |

| Total | [- [249,281 (0.72%) [13,027 |

! Long names are abbreviated with » for brevity.

2 @: publicly trusted; ©: trusted in specific regions or scenarios; O: not trusted.
3 Percentages based on each organization’s total Unicerts.

4 Noncompliant Unicerts signed in 2024 and 2025.

Validity of noncompliant Unicerts. Figure 3 shows validity
period differences across Unicert types. Among them, IDNCerts
showed better compliance with modern standards, with 89.6% con-
forming to the 90-day validity trend [93]. In stark contrast, other
Unicerts often exceed the recommended 398-day validity [9], with
over 10.7% lasting longer. Compared to normal Unicerts, the non-
compliant ones tend to have much longer lifespans, with about 50%
lasting a year and over 20% exceeding 700 days. These extended
lifespans may reflect a lag in Unicert’s compliance with modern
standards and increase security risks by prolonging the window
for potential compromise or exploitation.

4.4 Troublesome Certificate Fields

To evaluate the most troublesome certificate fields, we analyzed 21
fields that permit non-ASCII input and found wide variation among
issuers. Most allow non-ASCII Unicode or IDNs in Subject/Issuer,
and some extend this to extensions like SubjectAltNames and Cer-
tificatePolicies, which are typically related to human interaction
and user identity information. However, some issuers also show
noncompliance in handling certain Unicode fields (Figure 4). Com-
mon issues include discouraged CN use, repeated Subject attributes,
and incorrect encoding types. We categorize the most troublesome
fields into three main groups, summarized below.

Weak validation of entity name fields. Public key certificates
bind entity identities to keys, making accurate entity name parsing
critical. Errors can create ambiguity in identifying and verifying
peer entities, especially in CN and SAN fields (DNSNames, EmailAd-
dresses, URIs) [84]. However, many issuers still inadequately vali-
date these fields. The flaws include:

[F1] Poor validation of DNSNames. We found 51 issuers that have
issued Unicerts with noncompliant DNSNames. Specifically, we
identified 27,102 cases under the invalid character type in Table 1,
containing malformed IDNs that either (i) cannot convert to Uni-
code or (ii) include illegal characters (e.g., bidirectional controls)
after Punycode decoding, violating the IDNA standard [28]. These
IDNs are only syntactically valid (e.g., starting with “xn--") and can
resolve via wildcard DNS, though the specific subdomain labels
may not exist. Results showed that this issue persists, affecting

Mingming Zhang et al.

1.0
— — %ﬁ
£ 0.8 I j
g 1
5 0.6 —— All Unicerts
5 04 IDNCerts |
w —— OtherUnicerts
8 —— Noncompliant Unicerts
0.2 H——— —— Noncompliant IDNCerts
LU I R —— Noncompliant OtherUnicerts
0.0 — | | | | |

T T T T T
0 100 200 300 400 500 600 700 800 900 1000
Validity Period (Days)

Figure 3: CDF of Unicert validity period. The CDF’s long tail
is truncated beyond 1,000 days of validity.

prominent CAs such as Let’s Encrypt and Sectigo. Our discussions
with Let’s Encrypt and Mozilla Bugzilla suggest the root cause lies
in complex standard interdependencies and a narrow CA focus on
domain control validation per CA/B BRs (see Section 7).

[F2] Invalid values in CNs and SANs. Though deprecated, CNs
remain widely used (e.g., Snort [87], cURL [19], Postfix [77]) due to
fallback needs when SANs are missing. We found 27,478 Unicerts
containing invalid characters in the CN or SAN fields (see the invalid
character lints in Appendix D). For example, we found CN fields
containing U+0000, U+202E, U+000A, and a SAN field containing an
entire CSR PEM string. This issue is less common in pure IDNCerts
since their Unicode IDNs have been converted to Punycode.
Error handling in distinguished name (DN) fields. Each DN
uniquely identifies an entity in a certificate, supporting (i) certificate
chaining, (ii) CA decisions on issuance, and (iii) entity information
display in applications like browsers and email clients. Poor DN
attribute validation can confuse both programs and users when
inspecting entities. However, we found 14,722 Unicerts with DNs
containing invalid characters, potentially causing rendering or us-
ability issues. The common flaws include:

[F3] Certificate fields shown in browser or software Uls are espe-
cially error-prone. The CN, O, and OU fields are commonly visualized
in user agent software. Our analysis reveals major issues in these
Subject attributes, as shown in Figure 4. Their encoding and render-
ing directly impact user trust or aid attackers in spoofing attempts
(see Appendix F.1 for examples).

[F4] Potential software defects or bugs. We found 117 cases with
DN fields containing DEL (U+007F). In some cases, deleting charac-
ters based on DEL count reveals meaningful text. For exmaple, the
Subject field value “Prepard [DEL][DELJid Serc[DELJvices” could
represent “Prepaid Services”. Some reports suggest locale issues may
cause the delete key to input a DEL character instead of removing a
character [3]. However, we cannot directly attribute this issue to a
CA software bug, as it is not limited to a few CAs - these Unicerts
were signed by 20 organizations across 8 regions. Additionally, some
CAs added special characters at “regular intervals” due to implemen-
tation bugs. We found 400 Unicerts with evenly inserted NULs (e.g.,
“INULJCINUL]&[NULIILNUL]S” rendered as “C&IS”). Such Unicerts
were mainly issued by IPS CA and Thawte Consulting, likely due
to their issuing implementations.

Unicert

IMC’25, October 28-31, 2025, Madison, WI, USA

SubjectStreet
SubjectStateOrProvince
SubjectSerialNumber

J

SubjectPostalCode
SubjectOrganizationalUnit
SubjectOrganization
SubjectLocality
SubjectJurisdictionState

SubjectJurisdictionLocality

SubjectJurisdictionCountry

SubjectCountryName
SubjectCommonName
IssuerStateOrProvinceName

IssuerOrganizationalUnitName

IssuerOrganization

IssuerCountryName

IssuerCommonName

ExtSubjectAltName
ExtCertificatePolicies
SAN rfc822Name
CN/SAN dNSName

Figure 4: Fields containing internationalized contents and characters beyond U+0020~U+002E. We included CAs (issuer organi-
zation names) signing over 5K Unicerts. Long organization names are abbreviated with an asterisk («) for brevity. Colored (-/+)
fields show Unicode, with the darkest (+) indicating deviation from standards.

Table 3: Value variant strategies in Subject fields.

Variant Examples

Samco Autotechnik GmbH

SAMCO Autotechnik GmbH
NOWOCZESNASTODOLA.PL SP. Z O.0.
nowoczesnaSTODOLA.pl sp. z o.0.

SKAT ELEKTRONIKS, 000

SKAT Elektroniks Ltd.

RWE Energie, s.r.o.

RWE Energie, a.s.
PEDDY[U+00A@]SHIELD[U+00AQ]...

Variant Strategy

Character case conversion

Abbreviation variations

Addition of non-printable

characters Peddy Shield ...
Use of different whitespace | PRz\ 2 fL. [U+0020] "FEIERTT
characters BRI St [u+3000] HEISRIT

EDP -[U+002D] Energias de Portugal, S.A
EDP -[U+2013] Energias de Portugal, SA
Vegas. XXX®[U+2122] (Vegas...LLC)
Vegas XXX™[U+00AE] (Vegas...LLC)
crossmedia:team GmbH

crossmedia Team GmbH

St[U+FFFDIri AG (TeletexString)

Stori AG (UTF8String)

Substitution of resembling

Replacement of illegal
characters

Obfuscation in Subject fields. The Subject field is vital in several
scenarios. CAs use it to check applicant information against black-
lists before issuance and to revoke certificates linked malicious sub-
jects. Similarly, security tools rely on it to match malicious entities
against preset rules and threat intelligence. However, UTF8String’s
broad character support allows identity-equivalent certificates with
mismatched Subject DNs, introducing potential detection evasion:

[F5] CAs allow Subject variants without strict validation. We found
that Subject variants are common in CT logs. We identified six
variation strategies, such as case changes and character tweaks,
and summarized them in Table 3. For instance, the CountryName
field of Germany, which should be a 2-letter PrintableString, ap-
pears as “Germany”, “DE,de”, “DE,DE”, “GERMANY”, and others.

We also found multiple encodings of a French region name pre-
sented in the StateOrProvinceName field, such as “\u00c3\u0008le-
de-France”, “\u200e\u00cele-de-france”, “\u00eele-de-France”, all of
which should be “Ile-de-France”. These variants can complicate
Subject-based identity matching and enable malicious actors to

evade CA scrutiny and hinder threat detection.

5 Analysis of TLS Implementations

Our measurement shows CAs often permit broader Unicode than
standards allow, raising concerns about how TLS implementations
handle invalid characters or encodings. This section examines
whether popular libraries respect declared encodings and enforce
strict character checks.

5.1 Attribute Decoding Issues

RFC 5280 requires TLS implementations to decode certificate at-
tributes according to ASN.1-specified encoding types and corre-
sponding character ranges [46, 47]. For instance, PrintableString
and IA5String should only be decoded with ASCIL. However, we
found TLS libraries often apply default decoding rules, ignoring the
types declared in the ASN.1 certificates. To verify their decoding
compliance, we crafted Unicerts with mixed character ranges and
ASNL.1 string types (e.g., inserting non-ASCII characters into Print-
ableString) and applied the methods in Section 3.2, complemented
by manual inspection, to infer decoding behavior.

Attribute decoding issues. Table 4 highlights three noncompliant
decoding practices we uncovered across the libraries:

(1) Incompatible decoding: Occurs when a method mismatches
the standard encoding, e.g., decoding BMPString with ASCII or
decoding UTF8String with ISO-8859-1. We observed this practice
in OpenSSL, Forge, and Java.security.cert.

IMC’25, October 28-31, 2025, Madison, W1, USA

Mingming Zhang et al.

Table 4: Decoding methods for DN and GN.

PyOpen-

Crypto- | Golang | Java.security. | Bouncy- | Node.js

Encoding Scenarios Decoding Methods | OpenSSL | GnuTLS SSL graphy | Crypto cert Castle Crypto Forge
1SO-8859-1 O O @] o O
PrintableString in Name | UTF-8 @) @) o @) @) O
Modified ASCII o] @) @) O O) @)) o
ISO-8859-1 O - o O [©]
TA5String in Name UTF-8 @) - @) O @)) @)
Modified ASCII) - @) o ¢} O] @)) o
ASCII ® @) @) e} O ® @)) o
BMPString in Name UTF-16 @) @) @))
Modified ASCII 0] - [¢) ¢} o) o) ©)
- ISO-8859-1 @) 0] @) e} e} 0] @) ¢) ®
UTF8String in Name Modified ASCIT P o o o o o o o o
UTF-8 - o - o @)
IA5String in GN ISO-8859-1 - o e} O o O - ¢
Modified ASCII - o) O O o - © o

Each encoding scenario, involving multiple certificate fields and APIs, may correspond to different decoding methods.
Java.security.cert’s BMPString parsing is ASCII-compatible, though its decoding behavior is unclear.
- The implementation does not support parsing relevant fields, so we ignore its decoding checks.

O No decoding errors;

(2) Over-tolerant decoding: Expands character ranges beyond
the standard, e.g., decoding PrintableString with ISO-8859-1 or
BMPString with UTF-16, often seen when parsing DN and GN.
For instance, GnuTLS uses UTF-8 to decode all ASN.1 string types
(except BMPString) in DN and GN.

(3) Modified decoding: Handles undecodable bytes by replacing

them with substitute characters. The substitution behaviors vary
across libraries. For example, Java.security.cert replaces non-ASCII
bytes with U+FFFD in DN and GN; PyOpenSSL converts them to
U+002E (“”) in GN within CRLDistributionPoints; and OpenSSL
uses hexadecimal escape sequences (e.g., “\x2e\x4d”).
Impact of attribute decoding issues. To assess real-world ex-
ploitability, we analyzed CT logs for encoding practices and identi-
fied 7,415 Unicerts with ASN.1 encoding errors. After reconstructing
certificate chains via AIA extensions and verifying signatures, we
found 5,772 were issued by trusted CAs. Among these, 150 had
encoding errors in Subjects, 110 had errors in SANs, and 5,575 had
errors in CertificatePolicies. These results indicate that ASN.1 string
encoding is not strictly enforced from the CAs’ perspective, leaving
potential for exploiting decoding flaws.

As both encoding and decoding may deviate from standards, mis-
matches between encoded and decoded values are inevitable. They
can arise in two ways: correctly encoded Unicerts may produce
mismatches if implementations perform incompatible decoding,
and non-conforming Unicerts can cause mismatches through over-
tolerant decoding. Below, we discuss the impact of the mismatches
from both security and usability perspectives:

(1) Hostname validation bypass. A potential security threat from
encoding-decoding mismatches is hostname validation bypass. In
this threat model, the attacker is a compromised or malicious CA
aiming to perform a Man-in-the-Middle (MITM) attack by issuing
a forged certificate that is difficult for domain owners or auditors
to detect. The target is a client with flawed decoding logic (e.g.,
incompatible decoding) during certificate parsing. The attack suc-
ceeds when the client misinterprets a carefully encoded field with
a hostname. For example, a Subject CN® encoded as a BMPString

5 Although using the Subject CN field for hostname validation is not recommended,
some software still relies on it.

Over-tolerant decoding exist; ® Incompatible decoding exist; © Modified decoding exist.

(Unicode) may be incorrectly decoded by a client expecting ASCII,
transforming “\u6769\u7468\u7562\u792e\u636e” into “githube.cn”.
The likelihood of this threat scenario is low, as it requires both a
flawed issuer and a flawed parser. While we identified certificates
in CT logs that could cause such misinterpretation, we found no
evidence that they have been exploited in attacks.

(2) Field information misrecognition. Beyond hostname valida-
tion, certificate fields also support tasks like service log auditing
and threat hunting. Incompatible or over-tolerant decoding can
cause encoding-decoding mismatches, leading to misinterpretation
of field information. The possible threat model and impact depend
on the certificate usage context. In log auditing, network adver-
saries could initiate TLS connections with malformed certificates,
making the network logs hard to analyze [69]. In threat hunting,
in-path network attackers could exploit mismatches to bypass field
comparisons, similar to the threat model in Section 6.2.

(3) Parsing failures. Invalid bytes in certificate fields can trigger
parsing failures (e.g., “asnl: syntax error: PrintableString contains
invalid character”) when decoded with incompatible methods, po-
tentially occurring before other validation errors such as hostname
mismatches or untrusted CAs. This scenario primarily leads to
usability (not security) issues, specifically TLS connection termi-
nation, which renders the website temporarily inaccessible. The
direct impact is a disruption of service availability, rather than a
compromise of data integrity or confidentiality. In this sense, the
outcome is similar to an in-path attacker disrupting a TLS con-
nection. Our experiments show that OpenSSL, Java.security.cert,
and Forge exhibit incompatible decoding errors, but their modified
decoding methods prevent such failures.

5.2 Character Checking Errors

TLS implementations should also enforce character checks after
decoding. First, special characters within valid ranges should be
escaped according to standards [51, 98, 102]. For instance, commas
(,) and plus signs (+) in CNs should be escaped. Second, each ASN.1
string type has a defined character set, as listed in Table 8 (Appen-
dix B). Characters outside this set are considered noncompliant and
should either be escaped or trigger appropriate errors.

Unicert

IMC’25, October 28-31, 2025, Madison, WI, USA

Table 5: Standard violations in parsing DN and GN.

. . Crypto- | PyOpen- | Golan Bouncy- | Javasecu- | Node.js
Standard Violations ng]I;hy ySSpL Cryp t<g> Cas tlZ rity.cert Cryp tJo Forge | OpenSSL | GnuTLS
PrintableString Violations 6} o @) 6} o 6}) o)
Illegal chars in DN IA5String Violations o ©] o) ©] 0] ©] e] -
BMPString Violations O e} ©)) - @) - - o]
Illegal chars in GN IA5String Violations [6} [©) [©) - [0 [¢) [0 - [©)
RFC2253 Violations - - - o) @) - ® -
Non-standard escaping in DN | RFC4514 Violations o - [0} o o - ® o
RFC1779 Violations - - - O ©) O - ® -
RFC2253 Violations - ® - - - O - - -
Non-standard escaping in GN | RFC4514 Violations - ® - - - o} - - -
RFC1779 Violations - ® - - - [©] - - -

O No standard violation; © Unexploited violations; ® Exploited violations. “-” indicates not considered in this test and the reason is listed in Appendix E.

Character checking issues. During character checks, we ob-
served standard violations across the tested TLS libraries. As shown
in Table 5, none of the libraries enforced checks for illegal char-
acters among all ASN.1 string types, and 5 exhibited character-
escaping violations when converting certificate fields into X.509-
text representation (e.g., converting a SAN extension with two sub-
fields, DNSName="“a.com” and DNSName="“b.com”, to “DNS:a.com
DNS:b.com”).

Impact of character checking issues. In our CT dataset, we
identified 43,240 Unicerts containing invalid characters. Improper
handling of the special characters in such Unicerts could have the
following two impacts:

(1) Certificate attribute forgery. Allowing non-DNS characters in a
DNSName within the CN and SAN fields can enable attribute embed-
ding, leading to attribute forgery issues. For example, a Unicert with
DNSName="“a.com DNS:b.com” may be converted as “DNS:a.com
DNS:b.com” in the X.509 text presentation, causing string-based
analyzers to misinterpret it as valid for two domain names. This
scenario enables a threat model in which a compromised or ma-
licious CA crafts a Unicert with malformed attributes. Attackers
can exploit inconsistencies in attribute handling across different
components (e.g., clients and middleboxes) to bypass detection. We
observed the issues in PyOpenSSL’s GN parsing and OpenSSL’s
DN parsing, which allow injecting DNSNames into SANs or CNs
into DNs using strings that embed additional attributes. This model
resembles an existing vulnerability [70], which showed that am-
biguous field transformations can be exploited to bypass certificate
verification or name constraint checks.

(2) Special character replacement. When decoding GeneralNames
in CRLDistributionPoints, PyOpenSSL replaces the control charac-
ters in ranges U+0000~U+0009, U+000B, U+000C, U+000E~U+001F,
and U+007F with U+002E. This behavior enables a malicious entity
that has compromised a CA’s issuing infrastructure to effectively
disable revocation by embedding control characters in a CRL lo-
cation (e.g., “http://ssl\u0001test.com”), which a vulnerable client
parser transforms into a different address (“http://ssl.test.com”).
This threat model assumes the attacker has no control over the
CA’s revocation system. The attack is practical because it subverts
revocation checks, achieving the same outcome as a network adver-
sary blocking CRL access, but without requiring an in-path position.
Although browsers typically soft-fail on CRL retrieval [54, 86], this
threat still applies to clients that perform strict revocation checks or

depend on CRLs for critical functions. However, as revocation check-
ing is being phased out in favor of short-lived certificates [8, 30, 57],
this threat becomes negligible once CRLs are superseded.

5.3 Summary

TLS libraries often deviate from ASN.1 standards in Unicert parsing,
likely due to interpretation differences or simplified processing. We
identified issues in attribute decoding and character checks, some
of which can cause security vulnerabilities like hostname validation
bypass and subfield forgery.

6 Empirical Analysis of Threats

Given the entangled practices of both Unicert issuance and pars-
ing, we explored their real-world impact across various application
scenarios. We uncovered three novel threat cases: CT monitor mis-
leading, traffic obfuscation, and user spoofing. As the scenario of
user spoofing involves high attacking effort and low impact, we
detail it in Appendix F.1.

6.1 CT Monitor Misleading

CT enhances PKI trust by making certificate issuance transpar-
ent [56]. Among CT components, monitors index CT logs and
enable domain owners or other auditors to query certificate fields®
(e.g., by Subject CN) to detect certificate misissuance or forgery.
Prior studies show that third-party CT monitors often miss certifi-
cates [58, 91]. Thus, we suspect Unicerts with special characters
may (i) hinder correct parsing and indexing by monitors and (ii)
cause incorrect or incomplete query results.
Threat model. We propose a threat model, misleading CT monitors,
where the adversary is either a malicious CA or an entity that
compromises a flawed CA’s infrastructure. The adversary’s goal is
to issue unauthorized certificates for a target domain while making
them difficult for the domain owner or other auditors to detect,
even though the CA’s automated systems correctly log them in CT.
The attack relies on crafting certificates with special characters
(e.g., NUL bytes, non-printable characters) that interfere with how
CT monitors parse, index, or search certificate fields. For example,
a forged certificate for a domain name may be crafted to prevent it
from appearing in the monitor’s search results for that domain name
or its CN field. This allows the adversary to conceal their malicious
activity and deceive the certificate-field-based monitoring.

®For example, searching CT logs via Crt.sh: https://crt.sh/?a=1

IMC’25, October 28-31, 2025, Madison, W1, USA

Mingming Zhang et al.

Table 6: Testing results of Unicert tolerance among CT monitors.

Query Present
Monitors! Query fields Ca.s? Unicode | Fuzzy | U-Label check | Punycode Punycode F‘ail to re.turn c.erts
sensitive search search for IDN IDN IDN-ccTLD | with special Unicode
Subject (CN, O, OU, emailAddress)
Crt.sh +SAN (DNSName, IPAddress) X X v X v v X
SSLMate Spotter CN+SAN (DNSName, IPAddress) X X X v v v v
Facebook Monitor | CN+SAN (DNSName) X X X v v /3 X
Entrust Search? CN+SAN (DNSName) x3 X X X v X -
MerkleMap CN+SAN (DNSName) X X v X v v X

! We only selected the monitors that offer free, public field-based query services and are accessible to us.

2 Entrust discontinued its CT search service for trusted certificates in January 2025.
3 The latest test results are different from those in previous work [91].

This model holds regardless of the CA’s relationship with the

domain owner: whether the attacker is a malicious, unauthorized
CA or a compromised, authorized one, the result is the same, i.e.,
exploiting monitor weaknesses to conceal misissued certificates.
By doing so, the adversary undermines CT’s core guarantee of
transparency, which is intended to enable domain owners to detect
unauthorized issuance.
Problem analysis. We tested 5 public CT monitors (shown in
Table 6) for key functionalities like input handling (e.g., case sen-
sitivity, fuzzy search), support for searching Unicode strings, IDN
handling, and issues about certificate presentation. The experimen-
tal settings are detailed in Appendix F.2. We observed that the
public monitors show differences in certificate attribute handling,
and some struggle to detect malformed Unicerts:

[P1.1] Case-insensitive searching is a common practice. All CT
monitors can handle queries in a case-insensitive manner when
querying certificates. This is secure since it allows users to retrieve
all certificates related to their domain names, including detecting
forged ones with case variations.

[P1.2] Lacking fuzzy search may miss forged certificates with slight
variants. We found Entrust Search, SSLMate Spotter, and Facebook
Monitor lack fuzzy search, requiring exact field inputs for successful
queries. This, along with Unicode restrictions in search inputs,
hinders the detection of forged certificates with minor variations,
such as adding extra whitespace or multilingual characters in the
CN or O fields.

[P1.3] Failing to verify IDN legality increases the risk of undetected
misuse of deceptive certificates. All monitors support querying Pun-
ycode IDNs (A-labels) and checking formats, but Entrust Search,
Crt.sh, and MerkleMap do not check special characters in domains
with Unicode formats (U-labels). For instance, they accept domains
with labels like “xn--www-hn0a” (“\u200ewww” in Unicode), unlike
SSLMate Spotter and Facebook Monitor, which perform checks and
refuse the queries. This gap allows attackers to use deceptive do-
mains with control or invisible characters (e.g., zero-width spaces)
and apply certificates for phishing or malicious use. It undermines
the monitors’ reliability in detecting deceptive certificates, poten-
tially providing viability for evading traffic detection.

[P1.4] Unicode characters can disrupt monitors’ parsing and vi-
sualizing Unicerts, causing incomplete query results. For example,
SSLMate Spotter matches only the substring before “/” in the CN
or ignores the CN entirely if it contains a space.

6.2 Traffic Obfuscating

Most network detection components, including firewalls, intrusion
detection systems (IDS), intrusion prevention systems (IPS), and
event management systems (SIEM), rely on whitelists/blacklists,
rulesets, or traffic flow anomalies to identify suspicious traffic [1].
However, we found that some Unicode variations (as shown in Ta-
ble 3) in certificate fields can hinder detection by these components.
Threat model. This scenario matches a TLS traffic-obfuscation
threat model in which an in-path network attacker evades inspec-
tion by exploiting flaws in how detection systems parse or compare
specific certificate fields. The attacker intercepts TLS (e.g., TLS 1.2
or older) handshakes and supplies a certificate crafted to trigger
parsing mismatches, for example, inserting a NUL byte or extra
whitespace into a Subject CN (“Evil\x00 Entity” or “Evil Entity_”). If
the detection system (e.g., firewall or IDS) relies on naive string com-
parisons to block or allow specific certificate fields (e.g., “CN=Evil
Entity”), it will misrecognize the certificate and fail to detect the
malicious entity, or corrupt logging systems to block log-based anal-
ysis [12, 69]. This may facilitate attacker traffic in evading detection
and passing undetected.

Problem analysis. We tested three open-source middlebox engines
(Snort [87], Suricata [72], and Zeek [101]) and four client tools
(libcurl, urllib3, requests, and HttpClient) to assess their handling of
field encoding and character checks in certificates (see Appendix F.2
for experiment settings). The issues we discovered include:

[P2.1] Certificate entity parsing varies across network detection
tools. They may identify peer entities using CN, O, and SAN fields
in certificates through customized parsing methods built on TLS li-
brary APIs. However, they have trouble in handling complex scenar-
ios. For instance, Snort [92] takes the first CN/OU from duplicated
Subject fields, whereas Zeek [60, 79] uses the last CN and ignores
SANs not encoded as IA5String. As a result, network adversaries
could evade traffic detection by crafting certificates with malicious
entity information in specific positions or using non-IA5String en-
codings. Moreover, Suricata’s case-sensitive Subject matching can
be bypassed using character variants in Unicerts [16].

[P2.2] Some client implementations lack strict SAN format checks.
Ideally, CAs and relying parties should verify SAN formats per stan-
dards, converting IDNs and IRIs to Punycode for non-ASCII domain
names and avoiding conversion errors [63]. However, HTTP client
implementations vary in their format checking rules. For example,
urllib3 over-tolerantly restricts SAN fields to Latin-1 without check-
ing whether IDNs are valid Punycode. In this case, a non-compliant

Unicert

certificate containing U-labels in SAN DNSNames could pass the
client validation.

7 Discussion

Responsible disclosure. We responsibly reported the identified
issues to affected CAs and TLS library teams through Email, Mozilla
Bugzilla, HackerOne, and GitHub, and coordinated with them on
remediation. As of September 15, 2025, we received responses or
acknowledgments from 12 CAs and 6 TLS library maintainers. The
disclosure timeline and outcomes are summarized in Table 7, Ap-
pendix A. For IDN validation in certificate issuance, experts from
Let’s Encrypt, the CA/B Forum, and Mozilla acknowledged po-
tential risks but noted the cases do not violate current Baseline
Requirements (BRs), highlighting the need to revisit BR alignment
with modern IDNA [67]. Several CAs also emphasized the impor-
tance of external pre-issuance validation. For decoding and parsing
issues in TLS libraries, developers and maintainers confirmed in-
consistencies in handling ASN.1 and character encodings. Most
teams classified these as implementation bugs rather than security
vulnerabilities, unless a CA could be shown to issue technically
invalid or noncompliant certificates.

Key takeaways. We summarize the following key takeaways from
our discussions with stakeholders:

(1) Achieving an internationalized PKI requires coordination across
CAs, developers, and standards bodies. While groups like ICANN and
UASG promote IDNs and related web technologies [38, 44, 97], they
have not explicitly addressed the complexities of Unicode integra-
tion in PKI. This gap is particularly evident with IDNs in Unicerts,
where implementation is fragmented even though Punycode can
bridge Unicode domain names with the ASCII-only DNS. This high-
lights a persistent challenge in securely and consistently handling
Unicerts, from CA issuance to TLS client validation.

(2) Integrating Unicode into certificates spans multiple evolving
standards, and current CA/B BRs may lag behind some recent updates.
Our analysis of cross-referenced and multi-generational specifica-
tions indicates that the BRs, though widely followed by CAs and TLS
developers, represent only a minimal consensus on technical and
security standards. In our Bugzilla discussions, experts agreed that
while current BRs allow IDNs conforming to Punycode syntax and
being resolvable in DNS, these domains may still violate modern
IDNA specifications if they include disallowed code points [31, 43],
making them neither meaningful nor displayable in user agents.

(3) Parsing ASN.1 strings in Unicerts is non-trivial. Limited under-
standing and diverse interpretations of standards frequently result
in absent or inconsistent checks, thereby increasing security risks
and usability issues within TLS implementations. Moreover, the
inherent compromises between usability and security can also lead
to encoding-decoding inconsistencies, making coordinated reme-
diation efforts by both certificate issuers and parsers particularly
challenging.

Recommendations. For Unicert issuance, we propose three sug-
gestions: (1) Prompting automated issuance strategies for TLS cer-
tificates while restricting customizable fields and character sets,
as Let’s Encrypt, Cloudflare, and Amazon perform (e.g., support-
ing customizing DNSName only and excluding non-domain char-
acters), to reduce attack surfaces and complexity for both issuers

IMC’25, October 28-31, 2025, Madison, WI, USA

and parsers. (2) Clarifying updated constraints on Unicode encod-
ing and character checks according to the rules extracted from
cross-referenced and evolving standards, including RFC 5280 and
its updates, modern IDNA (IDNA2003 and IDNA2008) restrictions
on names, and string preparation standards (e.g., RFC 3454 and RFC
3491). LLMs such as RFCGPT could help streamline the extraction
of complex rules from standards. (3) Leveraging comprehensive
certificate checking linters to ensure issuance compliance. Addi-
tionally, our extended linter can be released to the community, with
plans to incorporate more rules.

For Unicert usage, we propose two suggestions: (1) The most
effective solution to ASN.1 encoding-decoding mismatches is com-
pliance with standards [46, 47] during decoding. When adopting
modified decoding to handle invalid byte sequences for compat-
ibility, developers should explicitly document the approach. (2)
When parsing certificate fields into X.509-text representations, it
is recommended to utilize proper data structures, such as those
in Golang Crypto, to store extracted values, thereby preventing
character escaping issues. If a field is parsed into a single string,
any additional characters introduced (e.g., “=", “+”, etc.) should be
properly escaped to ensure correctness. In addition, our testing
tools will be released for the community”.

8 Conclusion

This study examined Unicert issuance and parsing compliance in
the internationalized PKI, revealing challenges in Unicode adop-
tion through CT log analysis and TLS library evaluation. From the
issuance aspect, we noticed over 300 CA organizations showed
noncompliance, with weak checks for illegal characters, missing
normalization, and inadequate validation of critical entity informa-
tion in certificate fields. Despite PKI having made notable strides in
supporting Unicode, challenges like IDN validation and encoding
handling remain. From the parsing aspect, the implementations of
attribute decoding and character range checking for Unicerts are
problematic. The issues include incompatible or over-tolerant de-
coding and violations in handling illegal characters. These parsing
anomalies, combined with noncompliant Unicert issuance, pose
security and usability risks, including user spoofing, CT monitor
misleading, and traffic obfuscation, which require coordinated ac-
tions from all stakeholders.

Acknowledgments

We thank the anonymous reviewers and our shepherd for their valu-
able feedback, which help improve this paper. We are also grateful
to our industry partner, QiAnXin, for providing dataset support,
and to Shujun Tang, Zaifeng Zhang, Pengfei Liao, and Fan Yang
for their assistance with this work. This research is supported by
Zhongguancun Laboratory and the National Natural Science Foun-
dation of China (62302258, 62502474). Haixin Duan is supported
by the Taishan Scholars Program, and Xiang Li is supported by the
National Natural Science Foundation of China (62502236). Yiming
Zhang and Shenglin Zhang are both the corresponding authors.

References
[1] abuse.ch. [n.d.]. SSL Blacklist. https://sslbl.abuse.ch/.

"https://zeriny.github.io/unicert

https://sslbl.abuse.ch/

IMC’25, October 28-31, 2025, Madison, W1, USA

[2]

B3

)

[11

(12]

(13]

(14]

[15

[16

(17

[21

[22]

[23]

[24

Mark Alllman and Vern Paxson. 2007. Issues and etiquette concerning use of
shared measurement data. In Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement (San Diego, California, USA) (IMC °07). Association
for Computing Machinery, New York, NY, USA, 135-140. doi:10.1145/1298306.
1298327

Arch Linux Forum. 2024. Delete Key Bug: Inputs U+007F and U+0621 in pt_BR
Locale. https://bbs.archlinux.org/viewtopic.php?id=298417.

Alessandro Barenghi, Nicholas Mainardi, and Gerardo Pelosi. 2018. Systematic
parsing of X.509: Eradicating security issues with a parse tree. Journal of
Computer Security 26, 6 (2018), 817-849. arXiv:https://doi.org/10.3233/JCS-
171110 doi:10.3233/JCS-171110

Milan Bednar. 2021. OpenVPN - malformed log - certificate subject.
https://forum.netgate.com/topic/163362/openvpn-malformed-log-certificate-
subject.

Peter Bowen. 2016. certlint. https://github.com/amazon-archives/certlint.
Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using Frankencerts for Automated Adversarial Testing of
Certificate Validation in SSL/TLS Implementations. In 2014 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 114-129. doi:10.1109/SP.2014.15
CA/Browser Forum. 2023. Ballot SC063v4: Make OCSP Optional, Require CRLs,
and Incentivize Automation. https://cabforum.org/2023/07/14/ballot-sc063v4-
make-ocsp-optional-require-crls-and-incentivize-automation/.

CA/Browser Forum. 2024. Baseline Requirements for the Issuance
and Management of Publicly-Trusted TLS Server Certificates, Version
2.0.7. https://cabforum.org/working-groups/server/baseline-requirements/
documents/CA-Browser-Forum-TLS-BR-2.0.7.pdf.

Carnegie Mellon University-CERT Coordination Center. 2022. OpenSSL 3.0.0 to
3.0.6 decodes some punycode email addresses in X.509 certificates improperly.
https://kb.cert.org/vuls/id/794340.

Certificate Transparency Policy. 2018. Upcoming CT Log Removal:
WoSign. https://groups.google.com/a/chromium.org/g/ct-policy/c/UcCqlxuz_
1c/m/Mf_939xYAQAJ?pli=1.

Check Point Advisories. 2015. Multiple Vendors TLS Certificate Com-
mon Name NULL Byte Input Validation Error (CVE-2015-3008; CVE-2015-
3455). https://advisories.checkpoint.com/defense/advisories/public/2015/cpai-
2015-0589.html.

Chu Chen, Pinghong Ren, Zhenhua Duan, Cong Tian, Xu Lu, and Bin Yu.
2023. SBDT: Search-Based Differential Testing of Certificate Parsers in
SSL/TLS Implementations. In Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA
2023). Association for Computing Machinery, New York, NY, USA, 967-979.
doi:10.1145/3597926.3598110

Chu Chen, Cong Tian, Zhenhua Duan, and Liang Zhao. 2018. RFC-directed
differential testing of certificate validation in SSL/TLS implementations. In Pro-
ceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 859-870. doi:10.1145/3180155.3180226

Chrome. 2024. Certificate Transparency Log Policy. https://googlechrome.
github.io/CertificateTransparency/log_policy.html.

Suricata community. [n. d.]. Suricata Rules. https://github.com/OISF/suricata/
blob/aeb200e001f56982115bb8bc908a15a49373f9ec/doc/userguide/rules/
differences-from-snort.rst.

David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Hous-
ley, and W. Timothy Polk. 2008. RFC 5280: Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL) Profile. RFC 5280 (2008),
1-151. doi:10.17487/RFC5280

Adam M. Costello. 2003. Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA). RFC 3492. doi:10.
17487/RFC3492

curl. [n.d.]. curl. https://github.com/curl/curl.

curl. 2023. CVE-2023-28321. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2023-28321.

Unicode Character Database. 2024. Unicode Blocks. https://www.unicode.org/
Public/UCD/latest/ucd/Blocks.txt.

Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury. 2021. On Re-engineering
the X.509 PKI with Executable Specification for Better Implementation Guar-
antees. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Associa-
tion for Computing Machinery, New York, NY, USA, 1388-1404. doi:10.1145/
3460120.3484793

Joyanta Debnath, Christa Jenkins, Yuteng Sun, Sze Yiu Chau, and Omar Chowd-
hury. 2024. ARMOR: A Formally Verified Implementation of X.509 Certificate
Chain Validation . In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 1462-1480. doi:10.1109/SP54263.
2024.00220

Antoine Delignat-Lavaud, Martin Abadi, Andrew Birrell, Ilya Mironov, Ted
Wobber, and Yinglian Xie. 2014. Web PKI: Closing the Gap between Guidelines

Mingming Zhang et al.

and Practices. In 21st Annual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February 23-26, 2014. The Internet
Society. https://www.ndss-symposium.org/ndss2014/web-pki-closing-gap-
between-guidelines-and-practices

Hongying Dong, Hao Shu, Vijay Prakash, Yizhe Zhang, Muhammad Talha
Paracha, David Choffnes, Santiago Torres-Arias, Danny Yuxing Huang, and
Yixin Sun. 2023. Behind the Scenes: Uncovering TLS and Server Certificate
Practice of IoT Device Vendors in the Wild. In Proceedings of the 2023 ACM on
Internet Measurement Conference (Montreal QC, Canada) (IMC '23). Association
for Computing Machinery, New York, NY, USA, 457-477. doi:10.1145/3618257.
3624815

Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex Halderman. 2013.
Analysis of the HTTPS certificate ecosystem. In Proceedings of the 2013 Con-
ference on Internet Measurement Conference (Barcelona, Spain) (IMC ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 291-304. doi:10.1145/
2504730.2504755

Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael D. Bailey, J. Alex Halderman, and Vern Paxson. 2017. The
Security Impact of HTTPS Interception. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California, USA, February
26 - March 1, 2017. The Internet Society. https://www.ndss-symposium.org/
ndss2017/ndss- 2017-programme/security-impact-https-interception/

Patrik Faltstrom. 2022. Internationalized Domain Names for Applications 2008
(IDNA2008) and Unicode 12.0.0. RFC 9233 (2022), 1-26. doi:10.17487/RFC9233
Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models. In Pro-
ceedings of the 45th International Conference on Software Engineering (Melbourne,
Victoria, Australia) (ICSE "23). IEEE Press, 1469-1481. doi:10.1109/ICSE48619.
2023.00128

Feisty Duck. 2025. Certificate Lifetimes to Shrink to Just Forty-Seven
Days. https://www.feistyduck.com/newsletter/issue_124_certificate_lifetimes_
to_shrink_to_just_forty_seven_days.

Patrik Faltstrom. 2010. The Unicode Code Points and Internationalized Domain
Names for Applications (IDNA). RFC 5892. doi:10.17487/RFC5892

Globalsign. 2016. certlint. https://github.com/globalsign/certlint.

Google. 2024. Certificate Transparency Known Logs. https://certificate.
transparency.dev/google/.

Google Security Blog. 2024. Sustaining Digital Certificate Security - Entrust
Certificate Distrust. https://security.googleblog.com/2024/06/sustaining- digital-
certificate-security.html.

Internet Security Research Group. 2017. Let’s Encrypt Unicode Normalization
Compliance Incident. https://groups.google.com/g/mozilla.dev.security.policy/
¢/nMxaxhYb_iY/m/AmjCI3_ZBwA]J.

HackerOne. [n.d.]. Why You Need Responsible Disclosure and How to
Get Started. https://www.hackerone.com/knowledge-center/why-you-need-
responsible-disclosure-and-how-get-started.

David Hasselquist, Ludvig Bolin, Emil Carlsson, Adam Hylander, Martin Larsson,
Erik Voldstad, and Niklas Carlsson. 2023. Longitudinal Analysis of Wildcard
Certificates in the WebPKI. In 2023 IFIP Networking Conference (IFIP Networking).
IEEE, Barcelona, Spain, 1-9. doi:10.23919/IFIPNetworking57963.2023.10186356
Paul E. Hoffman and Pete Resnick. 2010. Mapping Characters for Internation-
alized Domain Names in Applications (IDNA) 2008. RFC 5895. doi:10.17487/
RFC5895

Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. 2011. The
SSL landscape: a thorough analysis of the x.509 PKI using active and passive
measurements. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference (Berlin, Germany) (IMC ’11). Association for Computing
Machinery, New York, NY, USA, 427-444. doi:10.1145/2068816.2068856

Allen D. Householder, Garret Wassermann, Arthur Manion, and Christopher
King. 2020. CERT® Guide to Coordinated Vulnerability Disclosure. (Sep 2020).
doi:10.1184/R1/12367340.v1

Russ Housley. 2018. Internationalization Updates to RFC 5280. RFC 8399.
doi:10.17487/RFC8399

Russ Housley. 2024. RFC 9549: Internationalization Updates to RFC 5280. RFC
9549 (2024), 1-10. doi:10.17487/RFC9549

TANA. 2024. IDNA Rules and Derived Property Values. https://www.iana.org/
assignments/idna-tables-12.0.0/idna-tables-12.0.0.xhtml.

ICANN. [n.d.]. Universal Acceptance (UA). https://www.icann.org/ua.
International Telecommunication Union. latest edition. ITU-T Recommen-
dation X.509: The Directory: Public-key and attribute certificate frameworks.
https://www.itu.int/rec/T-REC-X.509/en.

International Telecommunication Union. latest edition. X.680 : Information
technology - Abstract Syntax Notation One (ASN.1): Specification of basic
notation . https://www.itu.int/rec/T-REC-X.680/en.

International Telecommunication Union. latest edition. X.690 : Information
technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
https://www.itu.int/rec/T-REC-X.690/en.

https://doi.org/10.1145/1298306.1298327
https://doi.org/10.1145/1298306.1298327
https://bbs.archlinux.org/viewtopic.php?id=298417
https://arxiv.org/abs/https://doi.org/10.3233/JCS-171110
https://arxiv.org/abs/https://doi.org/10.3233/JCS-171110
https://doi.org/10.3233/JCS-171110
https://github.com/amazon-archives/certlint
https://doi.org/10.1109/SP.2014.15
https://cabforum.org/working-groups/server/baseline-requirements/documents/CA-Browser-Forum-TLS-BR-2.0.7.pdf
https://cabforum.org/working-groups/server/baseline-requirements/documents/CA-Browser-Forum-TLS-BR-2.0.7.pdf
https://kb.cert.org/vuls/id/794340
https://groups.google.com/a/chromium.org/g/ct-policy/c/UcCqlxuz_1c/m/Mf_939xYAQAJ?pli=1
https://groups.google.com/a/chromium.org/g/ct-policy/c/UcCqlxuz_1c/m/Mf_939xYAQAJ?pli=1
https://advisories.checkpoint.com/defense/advisories/public/2015/cpai-2015-0589.html
https://advisories.checkpoint.com/defense/advisories/public/2015/cpai-2015-0589.html
https://doi.org/10.1145/3597926.3598110
https://doi.org/10.1145/3180155.3180226
https://googlechrome.github.io/CertificateTransparency/log_policy.html
https://googlechrome.github.io/CertificateTransparency/log_policy.html
https://github.com/OISF/suricata/blob/aeb200e001f56982115bb8bc908a15a49373f9ec/doc/userguide/rules/differences-from-snort.rst
https://github.com/OISF/suricata/blob/aeb200e001f56982115bb8bc908a15a49373f9ec/doc/userguide/rules/differences-from-snort.rst
https://github.com/OISF/suricata/blob/aeb200e001f56982115bb8bc908a15a49373f9ec/doc/userguide/rules/differences-from-snort.rst
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC3492
https://doi.org/10.17487/RFC3492
https://github.com/curl/curl
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28321
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28321
https://www.unicode.org/Public/UCD/latest/ucd/Blocks.txt
https://www.unicode.org/Public/UCD/latest/ucd/Blocks.txt
https://doi.org/10.1145/3460120.3484793
https://doi.org/10.1145/3460120.3484793
https://doi.org/10.1109/SP54263.2024.00220
https://doi.org/10.1109/SP54263.2024.00220
https://www.ndss-symposium.org/ndss2014/web-pki-closing-gap-between-guidelines-and-practices
https://www.ndss-symposium.org/ndss2014/web-pki-closing-gap-between-guidelines-and-practices
https://doi.org/10.1145/3618257.3624815
https://doi.org/10.1145/3618257.3624815
https://doi.org/10.1145/2504730.2504755
https://doi.org/10.1145/2504730.2504755
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception/
https://doi.org/10.17487/RFC9233
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://www.feistyduck.com/newsletter/issue_124_certificate_lifetimes_to_shrink_to_just_forty_seven_days
https://www.feistyduck.com/newsletter/issue_124_certificate_lifetimes_to_shrink_to_just_forty_seven_days
https://doi.org/10.17487/RFC5892
https://github.com/globalsign/certlint
https://certificate.transparency.dev/google/
https://certificate.transparency.dev/google/
https://security.googleblog.com/2024/06/sustaining-digital-certificate-security.html
https://security.googleblog.com/2024/06/sustaining-digital-certificate-security.html
https://groups.google.com/g/mozilla.dev.security.policy/c/nMxaxhYb_iY/m/AmjCI3_ZBwAJ
https://groups.google.com/g/mozilla.dev.security.policy/c/nMxaxhYb_iY/m/AmjCI3_ZBwAJ
https://www.hackerone.com/knowledge-center/why-you-need-responsible-disclosure-and-how-get-started
https://www.hackerone.com/knowledge-center/why-you-need-responsible-disclosure-and-how-get-started
https://doi.org/10.23919/IFIPNetworking57963.2023.10186356
https://doi.org/10.17487/RFC5895
https://doi.org/10.17487/RFC5895
https://doi.org/10.1145/2068816.2068856
https://doi.org/10.1184/R1/12367340.v1
https://doi.org/10.17487/RFC8399
https://doi.org/10.17487/RFC9549
https://www.iana.org/assignments/idna-tables-12.0.0/idna-tables-12.0.0.xhtml
https://www.iana.org/assignments/idna-tables-12.0.0/idna-tables-12.0.0.xhtml
https://www.icann.org/ua

Unicert

(48]

[49

(51

[52]

[53

[54]

[56

[57

(58

=
=t

=
22

<
S

<
&

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: large lan-
guage models meet program synthesis. In Proceedings of the 44th Interna-
tional Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
"22). Association for Computing Machinery, New York, NY, USA, 1219-1231.
doi:10.1145/3510003.3510203

Dan Kaminsky, Meredith L. Patterson, and Len Sassaman. 2010. PKI Layer Cake:
New Collision Attacks against the Global X.509 Infrastructure. In Financial
Cryptography and Data Security, Radu Sion (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 289-303.

Erin Kenneally and David Dittrich. 2012. The Menlo report: Ethical principles
guiding information and communication technology research. Available at SSRN
2445102 (2012).

Steve Kille. 1995. A String Representation of Distinguished Names. RFC 1779
(1995), 1-8. doi:10.17487/RFC1779

Dr. John C. Klensin. 2010. Internationalized Domain Names for Applications
(IDNA): Definitions and Document Framework. RFC 5890. doi:10.17487/RFC5890
Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle
Beck, David Adrian, Joshua Mason, Zakir Durumeric, J. Alex Halderman, and
Michael Bailey. 2018. Tracking Certificate Misissuance in the Wild. In 2018
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 785-798.
doi:10.1109/SP.2018.00015

James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove,
and Christo Wilson. 2017. CRLite: A Scalable System for Pushing All TLS
Revocations to All Browsers. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE Computer Society, 539-556. doi:10.1109/SP.2017.17

Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
RFC 6962 (2013), 1-27. doi:10.17487/RFC6962

Ben Laurie, Adam Langley, Emilia Kasper, Eran Messeri, and Rob Stradling. 2021.
Certificate Transparency Version 2.0. RFC 9162. doi:10.17487/RFC9162

Let’s Encrypt. 2025. Announcing Six Day and IP Address Certificate Options in
2025. https://letsencrypt.org/2025/01/16/6-day-and-ip-certs.

Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing, and
Congli Wang. 2019. Certificate Transparency in the Wild: Exploring the
Reliability of Monitors. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 2505-2520.
doi:10.1145/3319535.3345653

LibESMTP. 2010. CVE-2010-1192. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2010-1192.

Zeek Log. [n.d.]. x509.log. https://docs.zeek.org/en/master/logs/x509.html.
Ziyang Luo, Can Xu, Pu Zhao, Xiubo Geng, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. 2023. Augmented Large Language Models with Parametric
Knowledge Guiding. arXiv:2305.04757 [cs.CL] https://arxiv.org/abs/2305.04757
Moxie Marlinspike. 2009. More Tricks For Defeating SSL In Prac-
tice. https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/
BHUSAO09-Marlinspike-DefeatSSL- SLIDES.pdf.

Alexey Melnikov, Wei Chuang, and Corey Bonnell. 2024. Internationalized Email
Addresses in X.509 Certificates. RFC 9598 (2024), 1-12. do0i:10.17487/RFC9598
Ruijie Meng, Martin Mirchev, Marcel Bohme, and Abhik Roychoudhury. 2024.
Large Language Model guided Protocol Fuzzing. In 31st Annual Network and
Distributed System Security Symposium, NDSS 2024, San Diego, California, USA,
February 26 - March 1, 2024. The Internet Society. https://www.ndss-symposium.
org/ndss-paper/large-language- model-guided- protocol-fuzzing/

Paul V. Mockapetris. 1987. Domain names - concepts and facilities. RFC 1034
(1987), 1-55. doi:10.17487/RFC1034

Morzilla. [n.d.]. Common CA Database (CCADB). https://www.ccadb.org/.
Mozilla Bugzilla. 2025. Let’s Encrypt: Issuance for Invalid Internationalized
Domain Name. https://bugzilla.mozilla.org/show_bug.cgi?id=1966515.

MyF5. 2019. K81239824: The X509 iRules commands may incorrectly parse SSL
certificate attributes. https://my.f5.com/manage/s/article/K81239824.

Netgate. 2021. OpenVPN-malformed log-certificate subject. https://forum.
netgate.com/topic/163362/openvpn-malformed-log- certificate-subject.
Node.js. 2021. CVE-2021-44533. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-44533.

Edward Oakes, Jeffery Kline, Aaron Cahn, Keith Funkhouser, and Paul Barford.
2019. A Residential Client-side Perspective on SSL Certificates. In 2019 Network
Traffic Measurement and Analysis Conference (TMA). 185-192. doi:10.23919/
TMA.2019.8784633

OISF. [n.d.]. Suricata. https://github.com/OISF/suricata.

OpenSSL. [n.d.]. CVE-2022-3786 and CVE-2022-3602: X.509 Email address
buffer overflows. https://openssl-library.org/post/2022-11-01-email-address-
overflows/.

OpenSSL. 2022. CVE-2022-3602. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2022-3602.

OpenSSL extension in Ruby. 2015. CVE-2015-1855. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2015-1855.
OSS. [n.d.]. ASN.1 Quick Reference. https://www.oss.com/asn1/resources/asn1-

made-simple/asn1-quick-reference.html.

[77]

[78

[79]

[80
[81

[82

[83

[84

[85]

[86

[87
[88
[89]

[90
[o1

[92

[93

[94]

[95]

[96
[97

[98

[99

[100

[101

[102]

A

IMC’25, October 28-31, 2025, Madison, WI, USA

Postfix. [n.d.]. Postfix TLS Support. http://www.postfix.org/TLS_README.
html.

Unicode Technical Reports. [n.d.]. Unicode Standard Annex #15: Unicode
Normalization Forms", October 2006. http://www.unicode.org/reports/tr15/.
Zeek repository. [n.d.]. The Zeek Network Security Monitor. https:
//github.com/zeek/zeek/blob/c04e503c92faa3872ed3419c2ec0327d70b62f0c/
src/file_analysis/analyzer/x509/X509.cc.

Kurt Roeckx. 2016. x509lint. https://github.com/kroeckx/x509lint.

Jonathan Rudenberg. 2017. Certificates with invalidly long serial numbers.
https://groups.google.com/g/mozilla.dev.security.policy/c/b33_4CyJbWL
Jonathan Rudenberg. 2017. Certificates with metadata-only subject fields. https:
//groups.google.com/g/mozilla.dev.security.policy/c/Sae51pT02Ng.

s2n-tls. 2023. Issue with parsing Certificate Common Name (CN) in s2n-tls.
https://github.com/aws/s2n-tls/security/advisories/ GHSA-h5p4-28rh-q272.
Peter Saint-Andre and Rich Salz. 2023. Service Identity in TLS. RFC 9525 (2023),
1-25. doi:10.17487/RFC9525

Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D. Keromytis, and
Suman Jana. 2017. HVLearn: Automated Black-Box Analysis of Hostname
Verification in SSL/TLS Implementations. In 2017 IEEE Symposium on Security
and Privacy (SP). 521-538. doi:10.1109/SP.2017.46

Trevor Smith, Luke Dickenson, and Kent E. Seamons. 2020. Let’s Revoke:
Scalable Global Certificate Revocation. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California, USA, February
23-26, 2020. The Internet Society. https://www.ndss-symposium.org/ndss-
paper/lets-revoke- scalable-global- certificate-revocation/

Snort 3.0 Team. [n.d.]. Snort++. https://github.com/snort3/snort3.

Rob Stradling. 2023. pkimetal. https://github.com/pkimetal/pkimetal.

Nick Sullivan. 2024. LLMS and RFCGPT - Leveraging large language model
platforms to understand standards. https://datatracker.ietf.org/meeting/
119/materials/slides-119-rasprg-1lms-and-rfcgpt-leveraging-large-language-
model-platforms- to-understand-standards-01.

Nick Sullivan. 2024. RFCGPT. https://cryptography.consulting/rfcgpt.
Aozhuo Sun, Jinggiang Lin, Wei Wang, Zeyan Liu, Bingyu Li, Shushang
Wen, Qiongxiao Wang, and Fengjun Li. 2024. Certificate Transparency
Revisited: The Public Inspections on Third-party Monitors. In 31st An-
nual Network and Distributed System Security Symposium, NDSS 2024, San
Diego, California, USA, February 26 - March 1, 2024. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/certificate-transparency-
revisited-the-public-inspections- on- third-party-monitors/

Snort 3.0 Team. [n.d.]. snort3 ssl.cc. https://github.com/snort3/snort3/blob/
8f8e9cf28856359a1ef3081baa9240£90276f8d4/src/protocols/ssl.cc.

The Chromium Projects. [n.d.]. Moving Forward, Together. https:
//www.chromium.org/Home/chromium-security/root-ca-policy/moving-
forward-together/.

The Register. 2025. Bug hunter tricked SSL.com into issuing cert for Alibaba
Cloud domain in 5 steps. https://www.theregister.com/2025/04/22/ssl_com_
validation_flaw/.

The Unicode Consortium. [n.d.]. Unicode 16.0 Character Code Charts. https:
//unicode.org/charts/PDF/U0000.pdf.

The ZMap Project. 2016. ZLint. https://github.com/zmap/zlint/.

UASG. 2024. UASG 050 UA-Readiness Report FY24. https://uasg.tech/download/
uasg-050-ua-readiness-report-fy24/.

Mark Wahl, Steve Kille, and Tim Howes. 1997. Lightweight Directory Access
Protocol (v3): UTF-8 String Representation of Distinguished Names. RFC 2253
(1997), 1-10. doi:10.17487/RFC2253

Jincheng Wang, Le Yu, and Xiapu Luo. 2024. LLMIF: Augmented Large Language
Model for Fuzzing IoT Devices. In 2024 IEEE Symposium on Security and Privacy
(SP). 881-896. doi:10.1109/SP54263.2024.00211

Yagqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2020. Gener-
alizing from a Few Examples: A Survey on Few-shot Learning. ACM Comput.
Surv. 53, 3, Article 63 (June 2020), 34 pages. doi:10.1145/3386252

Zeek Network Monitoring Project. [n. d.]. The Zeek Network Security Monitor.
https://github.com/zeek/zeek.

Kurt D. Zeilenga. 2006. Lightweight Directory Access Protocol (LDAP): String
Representation of Distinguished Names. RFC 4514 (2006), 1-15. d0i:10.17487/
RFC4514

Ethics

Ethical considerations. We adhered to ethical standards outlined
in the Menlo Report [50] and guidelines for public dataset use [2].
Our analysis of CA issuance practices relied on publicly available
CT log data, which is widely used in PKI research [58, 91], posing
no ethical concerns. The assessments of TLS libraries and threat
surfaces were conducted in controlled experimental environments.

https://doi.org/10.1145/3510003.3510203
https://doi.org/10.17487/RFC1779
https://doi.org/10.17487/RFC5890
https://doi.org/10.1109/SP.2018.00015
https://doi.org/10.1109/SP.2017.17
https://doi.org/10.17487/RFC6962
https://doi.org/10.17487/RFC9162
https://letsencrypt.org/2025/01/16/6-day-and-ip-certs
https://doi.org/10.1145/3319535.3345653
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1192
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1192
https://docs.zeek.org/en/master/logs/x509.html
https://arxiv.org/abs/2305.04757
https://arxiv.org/abs/2305.04757
https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf
https://doi.org/10.17487/RFC9598
https://www.ndss-symposium.org/ndss-paper/large-language-model-guided-protocol-fuzzing/
https://www.ndss-symposium.org/ndss-paper/large-language-model-guided-protocol-fuzzing/
https://doi.org/10.17487/RFC1034
https://www.ccadb.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=1966515
https://my.f5.com/manage/s/article/K81239824
https://forum.netgate.com/topic/163362/openvpn-malformed-log-certificate-subject
https://forum.netgate.com/topic/163362/openvpn-malformed-log-certificate-subject
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44533
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44533
https://doi.org/10.23919/TMA.2019.8784633
https://doi.org/10.23919/TMA.2019.8784633
https://github.com/OISF/suricata
https://openssl-library.org/post/2022-11-01-email-address-overflows/
https://openssl-library.org/post/2022-11-01-email-address-overflows/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3602
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3602
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1855
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1855
https://www.oss.com/asn1/resources/asn1-made-simple/asn1-quick-reference.html
https://www.oss.com/asn1/resources/asn1-made-simple/asn1-quick-reference.html
http://www.postfix.org/TLS_README.html
http://www.postfix.org/TLS_README.html
http://www.unicode.org/reports/tr15/
https://github.com/zeek/zeek/blob/c04e503c92faa3872ed3419c2ec0327d70b62f0c/src/file_analysis/analyzer/x509/X509.cc
https://github.com/zeek/zeek/blob/c04e503c92faa3872ed3419c2ec0327d70b62f0c/src/file_analysis/analyzer/x509/X509.cc
https://github.com/zeek/zeek/blob/c04e503c92faa3872ed3419c2ec0327d70b62f0c/src/file_analysis/analyzer/x509/X509.cc
https://github.com/kroeckx/x509lint
https://groups.google.com/g/mozilla.dev.security.policy/c/b33_4CyJbWI
https://groups.google.com/g/mozilla.dev.security.policy/c/Sae5lpT02Ng
https://groups.google.com/g/mozilla.dev.security.policy/c/Sae5lpT02Ng
https://doi.org/10.17487/RFC9525
https://doi.org/10.1109/SP.2017.46
https://www.ndss-symposium.org/ndss-paper/lets-revoke-scalable-global-certificate-revocation/
https://www.ndss-symposium.org/ndss-paper/lets-revoke-scalable-global-certificate-revocation/
https://github.com/snort3/snort3
https://github.com/pkimetal/pkimetal
https://datatracker.ietf.org/meeting/119/materials/slides-119-rasprg-llms-and-rfcgpt-leveraging-large-language-model-platforms-to-understand-standards-01
https://datatracker.ietf.org/meeting/119/materials/slides-119-rasprg-llms-and-rfcgpt-leveraging-large-language-model-platforms-to-understand-standards-01
https://datatracker.ietf.org/meeting/119/materials/slides-119-rasprg-llms-and-rfcgpt-leveraging-large-language-model-platforms-to-understand-standards-01
https://cryptography.consulting/rfcgpt
https://www.ndss-symposium.org/ndss-paper/certificate-transparency-revisited-the-public-inspections-on-third-party-monitors/
https://www.ndss-symposium.org/ndss-paper/certificate-transparency-revisited-the-public-inspections-on-third-party-monitors/
https://github.com/snort3/snort3/blob/8f8e9cf28856359a1ef3081baa9240f90276f8d4/src/protocols/ssl.cc
https://github.com/snort3/snort3/blob/8f8e9cf28856359a1ef3081baa9240f90276f8d4/src/protocols/ssl.cc
https://www.chromium.org/Home/chromium-security/root-ca-policy/moving-forward-together/
https://www.chromium.org/Home/chromium-security/root-ca-policy/moving-forward-together/
https://www.chromium.org/Home/chromium-security/root-ca-policy/moving-forward-together/
https://www.theregister.com/2025/04/22/ssl_com_validation_flaw/
https://www.theregister.com/2025/04/22/ssl_com_validation_flaw/
https://unicode.org/charts/PDF/U0000.pdf
https://unicode.org/charts/PDF/U0000.pdf
https://github.com/zmap/zlint/
https://uasg.tech/download/uasg-050-ua-readiness-report-fy24/
https://uasg.tech/download/uasg-050-ua-readiness-report-fy24/
https://doi.org/10.17487/RFC2253
https://doi.org/10.1109/SP54263.2024.00211
https://doi.org/10.1145/3386252
https://github.com/zeek/zeek
https://doi.org/10.17487/RFC4514
https://doi.org/10.17487/RFC4514

IMC’25, October 28-31, 2025, Madison, W1, USA

Mingming Zhang et al.

Table 7: Timeline and outcomes for responsible disclosure.

2025.03.11: Follow-up report.

TLS Libraries Timeline Outcomes
2024.05.06: Reported Unicode handling inconsistencies. | Claimed their X509 APIs are deprecated with the intent to remove them;
2025.10.26: Received a response recommended using the X.509 APIs from pyca/cryptography instead.
PyOpenSSL 2025.02.11: Reported another issue. . .
2025.02.18 & 03.17 Follow-up repors. Issue closed on GitHub without a response.
2025.02.11: Initial report. . .
Golang Crypto 2025.02.20: Received a response. Confirmed and fixed the issue (Go issue #72078).
2025.02.11: Initial report. . . . L . .
OpenSSL 2025.03.17: Follow-up report. Acknowledged inconsistencies across similar functions; stated affected functions could
2025.04.04: Received a response. be deprecated.
. 2025.02.11: Initial report. .
Node.js Forge No response received.

2025.02.11: Initial report.

2025.05.19: Follow-up report.

Node.js Crypto _ —
2025.05.21 - 2025.07.04: Interactive communication.

Confirmed issue as a bug, but not a vulnerability if CAs do not issue invalid certificates.

2025.02.11: Initial report.

GnuTLS 2025.03.26 & 04.26: Follow-up reports. No response received.

2025.02.11: Initial report. .
BouncyCastle 2025.02.17: Additional documents provided. No response received.

2025.02.13: Initial report. Confirmed issues; explained lax handling of certain ASN.1 string types for
Cryptography 2025.02.17: Received a response. compatibility; advised avoiding deprecated APIs.

Java.security.cert 2025.03.03 - 2025.07.18: Interactive communication.

Confirmed issues; committed to addressing them in a future Critical Patch Update.

CA Entities Timeline

Outcomes

2025.05.14: Initial report.

Let’s Encrypt 2025.05.15: Received a response.

Acknowledged potential security risks, discussed via Bugzilla (Bug #1966515), but
stated no violation of current CA/B BRs.

2025.05.13: Initial report.

Sectigo 2025.05.13 & 14: Received responses. Acknowledged receipt; no further response.
. 2025.06.24: Initial report. Acknowledged receipt; requested further investigation of other CA brands chaining
DigiCert 2025.06.27 & 07.09 & 08.04: Follow-up reports. to DigiCert roots; no further reply.
Netlock 2025.06.24: Initial report. Acknowledged issue; claimed improvements already deployed (enhanced pre-issuance
etloc

2025.06.25: Received a response.

validation, pkimetal checks); emphasized the importance of external validation.

Telia, PostSignum, 2025.07.09: Initial report.

Acknowledged known issue; stated it was already resolved.

ANF AC 2025.07.09 & 10: Received a response.
2025.07.09: Initial report. o .
ACCV 2025.07.10: Received a response. Confirmed risk/incident; stated issue was already resolved.
2025.07.09: Initial report. L
Certum 2025.07.09: Received a response. Claimed compliance with RFC 5280; stated strict validation is in place.
. 2025.07.09: Initial report. . . .
GlobalSign 2025.07.11: Received a response. Claimed encoding errors are detected pre-issuance.
2025.07.09: Initial report.
Telekom 2025.08.04: FOHOW-UP report. Attributed issues to a temporary misconfiguration that has since been fixed.
2025.08.08: Received a response.
Certicamara 2025.07.09: Initial report. Confirmed issue was fixed.

AOC CAT, Camerfirma | 2025.07.09: Initial report.

These CAs have ceased issuing certificates.

2025.07.09: Initial report.

GoDaddy 2025.08.04: Follow-up report.

Acknowledged receipt; no further reply.

2025.07.09: Initial report.

NISZ 2025.08.04: Follow-up report.

Acknowledged receipt; no further reply.

E-tugra, FNMT, 2025.07.09: Initial report.

Microsec, D-TRUST 2025.07.11 & 21: Follow-up reports.

No response received.

This summarizes disclosure responses received up to September 15, 2025.

Responsible disclosure and timeline. Following responsible
disclosure guidelines [36, 40], we notified affected vendors and
developers in phases aligned with our research timeline, allowing
sufficient time to implement fixes before publication. Our objective
was to disclose potential security and technical issues in a manner
most beneficial to the community.

We first contacted TLS library maintainers, as early experiments
focused on flaws in certificate parsing and decoding. The Unicode
handling bug in PyOpenSSL was reported during this initial phase,
while disclosures for other TLS libraries followed. Notifications to
CA issuers came later, as some analyses were completed during
the revision stage of this paper. Table 7 summarizes the disclosure
timeline. We also issued follow-up notifications to entities that did
not respond initially, with detailed outcomes documented in the
table.

B Term Introduction

This section provides a supplementary introduction to the termi-
nology related to ASN.1 string types (Table 8), certificate fields
(Table 9), and others (Table 10), with a particular focus on those
used throughout this paper.

C Settings and Prompts for Standard Extraction

This section introduces details of standard analysis tasks and rel-
evant LLM prompts for Section 3.1.1. Given a desired certificate
attribute, we constructed two tasks to derive standard requirements:
(i) identifying valid encoding types and data structures, and (ii) sum-
marizing encoding and format rules.

Unicert

Table 8: ASN.1 string types used in RFC 5280.

String Types Tag Description

UTF8String 12 This type uses a variable-width encoding(UTF-8) that supports
the entire Unicode character set (ISO/IEC 10646), making it
ideal for internationalization.

NumericString 18 This type uses ASCII encoding and is restricted to representing
only digits (0-9) and the space character.

PrintableString 19 This type uses ASCII encoding and supports upper case letters
[A-Z], lower case letters [a-z], the digits [0-9], space, and com-
mon punctuation marks. It does not support the "@", "&", and
"*" characters.

TA5String 22 This type uses ASCII encoding and the corresponding charset
is equivalent to the 7-bit ASCII character set (International
Alphabet 5), containing 128 characters, and is often used for
email addresses or DNS names.

VisibleString 26 This type uses ASCII encoding and encompasses all visible
(printable) characters of the IA5 (ASCII) character set, exclud-
ing control characters.

UniversalString 28 This type uses UCS-4 encoding and represents characters from
the entire Universal Character Set (UCS, ISO/IEC 10646) using
four octets per character.

BMPString 30 This string type encodes characters using two octets per
character(UCS-2), representing the Basic Multilingual Plane
(BMP) of Unicode (U+0000 to U+FFFF), which covers most com-
mon scripts.

TeletexString 20 This string type employs T.61 encoding, which supports mul-
tiple character sets for Teletex machines. It frequently uses
escape sequences to switch between these sets.

Table 9: Main certificate fields mentioned in this paper.

Certificate Fields Description

Subject/Issuer

CN/CommonName The primary identifier of the certificate’s subject, often a
hostname for servers.

C/CountryName The two-letter ISO country code of the certificate’s subject
or issuer.

L/LocalityName The city or locality of the certificate’s subject or issuer.

0O/OrganizationName The legal name of the organization associated with the cer-
tificate’s subject or issuer.

Extensions

SAN/SubjectAltName Alternative identities for the certificate’s subject, such as
multiple DNS names, IP addresses, or email addresses.

TAN/IssuerAltName Alternative identities for the certificate’s issuer, similar to
SAN but for the certificate authority.

CP/CertificatePolicies The policies under which the certificate was issued and its
intended use.

CRLDistributionPoints Locations where Certificate Revocation Lists (CRLs) for the

certificate can be found.

ATA/AuthorityInfoAccess | Information about how to access the issuer’s certificate
and/or online certificate status protocol (OCSP) services.
SIA/SubjectInfoAccess Information about how to access information and services
for the subject of the certificate.

Table 10: Other commonly used terms.

Terms Description

Punycode [18] | Anencoding syntax that represents Unicode characters in a limited ASCII
character subset used for IDNs.

A-Label The ASCII Compatible Encoding (ACE) form of an IDN, beginning with
the prefix "xn--", which could be the output of Punycode algorithm.

U-Label The Unicode form of an IDN, representing the domain name with its
original, native script characters.

NEFC [78] Unicode Normalization Form C, a canonical composition form that com-
bines characters and their combining marks into single, precomposed
characters.

Attribute When the UTF8String encoding is used, all character sequences SHOULD

normalization be normalized according to NFC.

For the first task, we extracted inclusion relationships among
data structures (e.g., DistinguishedName) and respective ASN.1
encoding types (e.g., UTF8String). Given specific encoding types,
we instructed the LLM to identify its character ranges based on
attribute types, as the same encoding type may enforce different
ranges depending on the attribute. For instance, DNSName and

IMC’25, October 28-31, 2025, Madison, WI, USA

EmailAddress can be encoded as IA5String; however, DNSName
allows only [a-zA-Z0-9.-], while EmailAddress can include “@”. For

the second task, we had the LLM summarize relevant requirements
based on the background context and attribute name.

We used the prompts constructed through the templates in Fig-
ure 5 and Figure 6. Since certain certificate attributes (e.g., Certifi-
catePolicies, CRLDistributionPoints) have more complex structures
than common attributes (e.g., CommonName), we need to repeat
the queries across multiple rounds and enforce detailed instruc-
tions, such as specifying options for sub-attributes. Meanwhile, we
pre-set a sliding window for the inputs and instructed the model
to generate condensed summaries when the input exceeded the
LLM’s input limit.

- Prompt Template N

Instruction:

Present relationships among the following data structures and encoding types:
[DistinguishedName, RDNSequence, UTF8String...]. Use ‘-->’ to denote a
relationship between them.

Requirements:

1. Ifastructure contains others, describe each layer in sequence.

2. Pointeach ASN.1 structure directly to its encoding types.

3. Point each encoding type to the character sets.

Example:

If a structure GeneralName contains DNSName, and DNSName should be
serialized as IA5String, your output would be:
GeneralName-->DNSName-->IA5String (ASCII characters, excluding ‘@)

Desired Output Format:
Shot-1: DistinguishedName-->RDNSequence-->DirectoryString

Shot-2: GeneralName-->IPAddress (binary/octet string)
N J

Figure 5: Prompt template for drawing a directed graph to
present data structure relationships.

s Prompt Template ~N

Instruction:

You are a protocol analyst. For a given [desired cert attribute] and provided

[background context], extract the attribute’s permissive data structures, encoding

types, and any relevant requirements on encoding and string format.

Requirements:

1. Format “structures” as a nested JSON if there are hierarchical inclusions, e.g.,
{“GeneralName” : {“DNSName” :{}}. Optional structures include[list optional
structures].

2. For “requirements”, return a list of relevant encoding or format restrictions as
raw text. [f no restrictions apply, respond with “No.”

Cert attribute: [desired cert attribute]

Background context: [knowledge]

Desired Output Format:
Shot-1:
“SubjectAltName™: {
“structures”: “GeneralName”,
“requirements”: [
“When the SubjectAltName extension contains a domain name system
label, the domain name MUST be stored in the DNSName (an IA5String)”, ...]

1
. J

Figure 6: Prompt template for gathering encoding and format
requirements.

IMC’25, October 28-31, 2025, Madison, W1, USA

Table 11: Top 25 lints identifying noncompliant cases.

Lint Name Lint Type New Lint Level #NC Unicerts
w_rfc_ext_cp_explicit_text_not_utf8 Invalid Encoding SHOULD 117,471
w_cab_subject_common_name_not_in_san Invalid Structure MUST 93,664
e_rfc_dns_idn_a2u_unpermitted_unichar Invalid Character v MUST 26,701
e_subject_organization_not_printable_or_utf8 Invalid Encoding v MUST 25,751
e_subject_common_name_not_printable_or_utf8 Invalid Encoding Vv MUST 25,081
e_subject_locality_not_printable_or_utf8 Invalid Encoding v MUST 17,825
e_rfc_subject_dn_not_printable_characters Invalid Character MUST 13,320
e_subject_ou_not_printable_or_utf8 Invalid Encoding v MUST 11,654
e_subject_jurisdiction_locality_not_printable_or_utf8 Invalid Encoding Vv MUST 4,213
e_rfc_ext_cp_explicit_text_too_long Tllegal Format MUST 2,988
e_subject_jurisdiction_state_not_printable_or_utf8 Invalid Encoding v MUST 2,829
e_rfc_ext_cp_explicit_text_ia5 Invalid Encoding MUST 2,550
e_subject_jurisdiction_country_not_printable Invalid Encoding v MUST 1,744
e_subject_state_not_printable_or_utf8 Invalid Encoding v MUST 1,671
e_rfc_subject_printable_string_badalpha Invalid Character MUST 1,561
w_community_subject_dn_trailing_whitespace Invalid Character SHOULD 1,356
e_subject_postal_code_not_printable_or_utf8 Invalid Encoding v MUST 1,262
e_subject_street_not_printable_or_utf8 Invalid Encoding Vv MUST 990
w_cab_subject_contain_extra_common_name Discouraged Field SHOULD 589
e_subject_dn_serial_number_not_printable Invalid Encoding MUST 461
w_community_subject_dn_leading_whitespace Invalid Character SHOULD 437
e_rfc_subject_country_not_printable Invalid Encoding MUST 409
e_rfc_dns_idn_malformed_unicode Invalid Character MUST 401
e_cab_dns_bad_character_in_label Invalid Character MUST 326
e_ext_san_dns_contain_unpermitted_unichar Invalid Character v MUST 109

Mingming Zhang et al.

I NC Unicerts: Non-compliant Unicerts detected by the relevant lint.

D List of Unicert Checking Lints

We present in Table 11 the lints that have detected over 100 non-
compliant cases in our measurement, helping evaluate the scope
and severity of the issues more effectively.

E Experiment Settings of TLS Library Analysis

This section introduces detailed experiment settings for analyzing
TLS libraries in Section 3.2 and Section 5.

The tested TLS library and API lists. The functions tested in our
analysis are listed in Table 12 and Table 13, with some being class
methods rather than standalone functions.

Experiment settings for test certificate generation. The test
certificates cover the following parameters:

e OIDs of the certificate attribute types: 2.5.4.3, 2.5.4.5, 2.5.4.7,
2.5.4.8, 2.5.4.10, 2.5.4.11, 2.5.4.15, 0.9.2342.19200300.100.1.25, and
1.2.840.113549.1.9.1.

e ASN.1 encoding types: PrintableString, UTF8String, IA5String,
and BMPString.

e GeneralName types: DNSName, RFC822Name, and URI.

Details of character checking in TLS libraries. In analyzing
character checking errors (Section 5.2), we excluded the following
cases: (i) fields parsed into structured data (e.g., Go Crypto’s DN
parsing) rather than an X.509-text string, where escaping checks
were not applicable; (ii) fields parsed into an X.509-text string
with an explicitly stated RFC (e.g., Cryptography’s DN parsing
per RFC4514), where other RFCs were not assessed; (iii) libraries
unable to parse all extensions (e.g., BouncyCastle); and (iv) instances
of incompatible decoding, where misidentified Unicode characters
made character handling irrelevant.

F Additional Threat Scenario
F.1 Scenario: User Spoofing

Beyond the threat scenarios in Section 6, we identified another
novel scenario where adversaries might trick browsers with mal-
formed Unicerts to facilitate user spoofing attacks. Given its high
attack conditions and limited immediate impact, we include the dis-
cussion in the appendix to invite further exploration from interested
researchers and stakeholders.

Problem introduction. Visualizing X.509 certificates in browsers
helps users assess website entity information, with key fields (e.g.,
issuer, subject) rendered as string representations in components
like certificate boxes in address bars. However, errors in Unicode
handling and rendering in Unicerts can mislead users. While some
browsers have upgraded IDN display policies, many still fail to
adequately inspect IDNs and non-ASCII characters in Unicerts,
facilitating spoofing attacks. This section evaluates browser certifi-
cate rendering components by analyzing visual implementations
in popular browsers and their susceptibility to spoofing users with
abnormal Unicerts.

Problem analysis. We tested popular browsers using malformed
Unicerts with special Unicode, such as combining and formatting
characters, focusing on how certificate components render Unicode
attributes. We examined whether browsers visually display special
Unicode to help users identify issues, validate character ranges, and
handle deceptive characters. We also assessed the effectiveness of
warning pages in helping users understand connection failures. Ta-
ble 14 summarizes our findings, highlighting differences in browser
practices:

[G1.1] Browsers’ implementations vary in visualizing control char-
acters. Most browsers mark non-printable C0/C1 codes with visual
indicators like Unicode symbols or URL encoding (e.g., %00), while
only Firefox uses robust but potentially insecure rendering. In-
stead, invisible layout codes (U+2000~U+206F) are invisible across

Unicert IMC’25, October 28-31, 2025, Madison, WI, USA
Table 12: Tested TLS libraries and APIs for loading certificates and parsing Subject/Issuer fields.

TLS Libs Version Subject Issuer LoadCert
X509_NAME_oneline() X509_NAME_oneline()

OpenSSL 3.3.0 X509_NAME_print() X509_NAME_print() PEM_read_bio_X509()
X509_NAME_print_ex() X509_NAME_print_ex()
gnutls_x509_crt_get_subject_dn() gnutls_x509_crt_get_issuer_dn() .

GnuTLS 371 gnutls_x509_crt_get_subject_dn3() gnutls_x509_crt_get_issuer_dn3() gnutls_x509_crt_import()

PyOpenSSL 24.2.1 get_subject() get_issuer() load_certificate()

CryptoGraphy 42.0.7 subject.rfc4514_string() issuer.rfc4514_string() load_der_x509_certificate()

Go Crypto 1.23.0 Subject.ShortName Issuer.ShortName ParseCertificate()
getSubjectDN().toString() getlssuerDN().toString()

. getSubjectDN().getName() getlssuerDN().getName() CertificateFactory.getInstance("X.509")

Java security.cert | 1.8/11.0/17.0/21.0 getSubjectX500Principal().getName() getIssuerX500Principal().getName() .generateCertificate()
getSubjectX500Principal().toString() getIssuerX500Principal().toString()

BouncyCastle 1.78.1 getSubject().toString() getIssuer().toString() X509CertificateHolder()

Forge 1.3.1 subject.getField() issuer.getField() X509Certificate()

Node.js Crypto 22.4.1 subject issuer certificateFromPem()

1 Some APIs in the table have multiple parameter settings, which we do not showcase here.

2 After importing the certificate, there are two ways to obtain the parsed values: by calling functions or by accessing attributes.

Table 13: Tested TLS libraries and APIs for parsing certificate extensions.

TLS Libs SAN TIAN AJA CRLs SIA
OpenSSL - - - - -
GnuTLS gnutls_x509_crt_get_subject_alt_name() | gnutls_x509_crt_get_issuer_alt_name() - gnutls_x509_crt_get_crl_dist_points() -
PyOpenSSL str(get_extension()) -
CryptoGraphy get_extension_for_oid().value

Go Crypto SubjectAlternativeName - - CRLDistributionPoints -
Java security.cert | getSubjectAlternativeNames() getIssuerAlternativeNames() - - -
BouncyCastle - - - - -
Forge getExtension() - - -
Node.js Crypto subjectAltName [- infoAccess - -

- The TLS library cannot parse this field.

Table 14: Certificate visualization and potential spoofing issues in mainstream browsers.

Checking and Rendering Results Warning Pages
Browser Version | Kernel Components C0&C1 | Layout Homf)g.rfiph Inc9rr§ct Flawed ASI\{.I Spo.of.il?g
controls | controls feasibility substitutions | range checking feasibility
. Digest/Details [%] [%] M v v
Firefox v. 141.0 Gecko General - - - - - v
. . Digest/Details ° [%] v v v
Safari v. 17.6 Webkit General - - - - - X
Chromium-based! / Blink All parts ° 2] v v X v

! We tested several Chromium-based browsers, including Chrome (v. 139.0), Edge (v. 128.0), Brave (v. 1.73.97), Opera (v. 114.0), Yandex (v. 24.12.1), and 360 Browser (v. 14.1).
Despite their custom implementations, their certificate rendering modules function similarly, allowing us to consolidate their results.

2 &: Invisible; @: Visible; v : The component is vulnerable;X: The component is not vulnerable; -: no such components.

browsers, enabling attackers to craft deceptive Unicerts, leaving
users unable to spot threats via certificate rendering.

[G1.2] Detecting character similarities in certificate components is
problematic. Browsers fail to detect visual similarities (e.g., Cyrillic-
Latin homographs) in UTF8Strings within Unicerts, making it feasi-
ble to facilitate homograph attacks. They also misapply equivalent
character substitution policies, such as converting the Greek ques-
tion mark (U+037E) to a semicolon (U+003B) instead of the correct
Latin question mark (U+003F), violating Unicode standards [95].

[G1.3] Crafting certificate fields can manipulate browser warning
pages. Browsers generate warning pages using server certificate de-
tails. For example, Chromium-based browsers (e.g., Chrome, Edge)
prioritize subject fields (CN, O, OU) with UTF8String support, while
Firefox uses SAN DNSNames. These details in warning pages could

guide users on whether to proceed with the “insecure” website

access. However, we found that these warning pages can render
control characters, allowing manipulation via crafted certificate

fields. Here, we presented two examples of generating spoofing
warning pages using crafted certificates.

First, we found that inserting bidirectional control characters
into CN fields can cause all tested Chromium-based browsers to
display “www.\u202elapyap\u202c.com” as “www.paypal.com”, as
the Chrome example shown in Figure 7.

Second, we found customized SANSs can alter Firefox warnings.
We provided Firefox with a certificate containing a Subject CN with
a long descriptive string (“port 8443. But they’re the same site...”).
In this case, the browser generates the alert information based on
the crafted certificate fields (Figure 8), which can mislead users and
reduce their vigilance.

IMC’25, October 28-31, 2025, Madison, W1, USA

A

Your connection is not private

Attackers might be trying to steal your information from www. com (for example, pas rds,
messages, or credit cards). Learn more about this warning
NET:ERR_CERT_COMMON_NAME_INVALID
Subject: www.paypal.com
Subject: www. lapyap .coml

Issuer: Self-signed Root CA

Expires on: Dec 24, 2024

Current date

Advanced Back to safety

Figure 7: A spoofing warning page in Chrome.

Websites prove their identity via certificates. Firefox does not trust this site because it uses a
certificate that is not valid for www.example.com. The certificate is only valid for port 8443. But

they're the same site. You can continue or try: http://www.example.com.
Malformed content!

Error code: SSL_ERROR_BAD_CERT_DOMAIN

View Certificate

Go Back (Recommended) Accept the Risk and Continue

Figure 8: A spoofing warning page in Firefox.

F.2 Experimental Setup

This section introduces detailed experiment settings that are nec-
essary for understanding the threat analysis in each scenario in
Section 6 and Section F.1.

Experiment settings for CT monitor misleading analysis. We
focused on open CT monitors that offer public, free services, includ-
ing Entrust Search, Crt.sh, SSLMate Spotter, Facebook Monitor, and

Mingming Zhang et al.

MerkleMap. These monitors allow users to search certificates by
SAN and a limited subset of Subject attributes, as shown in Table 6.
To test their search and display functionality, we sampled 1 thou-
sand noncompliant Unicerts, especially selecting those containing
non-printable characters in the CN, O, OU, and SAN fields. We
evaluated their handling of Unicerts with invalid characters, illegal
formats, and flawed normalization.

Experiment settings for traffic obfuscating analysis. We de-
signed an experiment to assess the feasibility of evading network
detection using Unicerts. Based on the adoption popularity, we se-
lected the latest versions of various open-source software, including
three middlebox engines (Snort [87], Suricata [72], and Zeek [101])
and four client implementations (libcurl, urllib3, requests, and Http-
Client). For middleboxes, we analyzed TLS certificate usage and
validation rules by reviewing their source code and documentation.
For client implementations, we set up a test TLS server that pro-
vides and rotates the test certificates generated in Section 5 and
conducted dynamic execution tests to observe how they parse and
handle these certificates.

Experiment settings for user spoofing analysis. We tested
widely used web browsers (Table 14) on Ubuntu 20.04.6, Windows
11, and macOS Sonoma 14.6.1. Most of them use the Chromium-

based Blink engine, showing similar rendering behaviors. The test
Unicerts were generated as described in Section 3.2, focusing on ex-

ploitable Unicode characters like combining and formatting codes.
We set up an HTTPS server with these Unicerts and examined
how browser components render the crafted values. We used these
Unicerts to examine browser components’ rendering of Unicode
attributes. The tested components include digest module like Cer-
tificate Viewer in Chrome, a general module outlining key fields, a
detail module listing all fields, and warning pages alerting web users
for potential issues. For components with anomalies, we further
tested their defense mechanisms using malformed certificates.

	Abstract
	1 Introduction
	2 Background
	2.1 Public Key Certificate Standards
	2.2 X.509 Certificates
	2.3 Terminology
	2.4 Related Work

	3 Methodology
	3.1 Unicert Compliance Analysis
	3.2 TLS Library Analysis
	3.3 Limitations

	4 Compliance of Unicert Issuance
	4.1 Certificate Dataset
	4.2 Unicert Issuance Overview
	4.3 Noncompliant Unicert Landscape
	4.4 Troublesome Certificate Fields

	5 Analysis of TLS Implementations
	5.1 Attribute Decoding Issues
	5.2 Character Checking Errors
	5.3 Summary

	6 Empirical Analysis of Threats
	6.1 CT Monitor Misleading
	6.2 Traffic Obfuscating

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Ethics
	B Term Introduction
	C Settings and Prompts for Standard Extraction
	D List of Unicert Checking Lints
	E Experiment Settings of TLS Library Analysis
	F Additional Threat Scenario
	F.1 Scenario: User Spoofing
	F.2 Experimental Setup

