
Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud
Function in the Wild

Yijing Liu∗
Tsinghua University
Beijing, Beijing, China

liu-yj23@mails.tsinghua.edu.cn

Mingxuan Liu∗
Zhongguancun Laboratory
Beijing, Beijing, China

liumx@mail.zgclab.edu.cn

Yiming Zhang
Tsinghua University
Beijing, Beijing, China

zhangyiming@tsinghua.edu.cn

Baojun Liu
Tsinghua University
Beijing, Beijing, China
lbj@tsinghua.edu.cn

Jia Zhang†
Tsinghua University
Beijing, Beijing, China

zhangjia2017@tsinghua.edu.cn

Geng Hong
Fudan University

Shanghai, Shanghai, China
ghong@fudan.edu.cn

Haixin Duan‡
Tsinghua University
Beijing, Beijing, China

duanhx@tsinghua.edu.cn

Min Yang
Fudan University

Shanghai, Shanghai, China
m_yang@fudan.edu.cn

Abstract
Serverless cloud functions transfer server management responsi-
bilities to service providers, o!ering scalability and cost-e"ciency.
This convenience not only facilitates normal activities but also
raises abuse concerns. So far, public understanding of real-world
cloud functions remains limited. To #ll this gap, we conducted
an in-depth measurement study to uncover their practical usage
and abuse. Through empirical analysis of nine leading providers
(e.g., AWS, Tencent), we identi#ed 531,089 function domains from
a passive DNS dataset spanning April 2022 to March 2024. We #rst
investigated the usage status of serverless cloud functions, showing
the di!erent practices between providers. Additionally, based on
active requests to these functions, we pointed out privacy risks
of unauthorized access and identi#ed four abuse types, including
covert C2 communication, hosting malicious websites, promoting
illicit services, and abusing egress nodes as IP proxies. Alarmingly,
4.89% of cloud functions are being abused, with over 614k invoca-
tions recorded. Only four abused functions were $agged by existing
threat intelligence systems, indicating critical gaps in security mon-
itoring for serverless environments. Our work o!ers insights into
the serverless cloud ecosystem and provides recommendations for
better management. With responsible disclosure, we hope to raise
awareness and improve protective measures against abuses among
cloud function providers.

∗Both authors contributed equally to this research.
†Also with Quancheng Laboratory.
‡Also with QI-ANXIN Technology Research Institute.

This work is licensed under a Creative Commons Attribution 4.0 International License.
IMC ’25, Madison, WI, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1860-1/2025/10
https://doi.org/10.1145/3730567.3732915

CCS Concepts
• Networks → Cloud computing; Network measurement; •
Security and privacy → Distributed systems security.

Keywords
Serverless Function; Function Abuse; Usage Measurement

ACM Reference Format:
Yijing Liu, Mingxuan Liu, Yiming Zhang, Baojun Liu, Jia Zhang, Geng
Hong, Haixin Duan, and Min Yang. 2025. Dive into the Cloud: Unveiling
the (Ab)Usage of Serverless Cloud Function in the Wild. In Proceedings
of the 2025 ACM Internet Measurement Conference (IMC ’25), October 28–
31, 2025, Madison, WI, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3730567.3732915

1 Introduction
Serverless cloud function1 represents an emerging cloud service
model that allows users to execute code without the need to manage
servers. Operating within the Function as a Service (FaaS) model,
serverless functions are di!erent from traditional service models
like SaaS (Software as a Service), PaaS (Platform as a Service), and
IaaS (Infrastructure as a Service). Their cost-e!ectiveness and ease
of use make them especially attractive to developers [24]. To meet
the growing demand, major cloud providers have introduced server-
less function services such as AWS Lambda (2014) [8], Azure Func-
tions (2016) [41], Google Cloud Functions (2017) [34], etc. The global
serverless function market was valued at approximately $7.5 billion
by 2022 [69], highlighting its growing signi#cance within cloud
infrastructure services.

However, serverless cloud functions not only attract benign us-
age [80] but also facilitate malicious activities. Similar to the abuse
in other cloud infrastructures [35, 55, 56], adversaries hide mali-
cious content behind the infrastructure of cloud services, such as
domains, TLS certi#cates, and IP addresses. This is particularly
concerning, as the infrastructures of cloud providers are frequently

1In our paper, the terms “serverless function”, “cloud function”, and “function” are
used interchangeably and all refer “serverless cloud function”.

63

https://orcid.org/0009-0009-9204-111X
https://orcid.org/0000-0002-2163-6505
https://orcid.org/00000-0002-6774-5299
https://orcid.org/0000-0002-9032-8063
https://orcid.org/0000-0001-7896-3382
https://orcid.org/0000-0003-1811-9432
https://orcid.org/0000-0003-0083-733X
https://orcid.org/0000-0001-9714-5545
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3730567.3732915
https://doi.org/10.1145/3730567.3732915
https://doi.org/10.1145/3730567.3732915

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

whitelisted by web application #rewalls (WAFs) [86]. Unfortunately,
the convenience and low cost of cloud functions exacerbate cloud
resource abuse. Several reports [6, 70] indicate that serverless func-
tions have been used to hide C2 (command and control) beacons,
highlighting the risk of cloud functions being exploited in the real
world. Given the growing market for cloud function services, un-
derstanding their extent of abuse and role in supporting malicious
activities is crucial.

Existing studies [37, 46, 62, 74, 81] mainly focus on measur-
ing the performance of serverless computing, relying on internal
data center records [46] or a limited set of actively registered func-
tions [81]. Additionally, most research centers on AWS or a few
leading providers, resulting in a lack of comprehensive insights into
the broader landscape. Therefore, there is no systematic research
analyzing the potential misuse of serverless functions, and our un-
derstanding of their real-world utilization is limited. Fundamental
questions about the number of registered cloud functions and usage
patterns across di!erent providers remain unanswered, let alone
evaluations of their misuse potential. Since serverless functions
operate on-demand and resources are activated only upon invoca-
tion [21], it is challenging to externally identify which functions
are actively providing services.
Our work. Given that serverless functions primarily provide ser-
vices through HTTP(s), passive DNS (PDNS) o!ers us a systematic
perspective to examine the (ab)usage of serverless functions. Collab-
orating with a major Chinese DNS service provider, we leveraged
their extensive PDNS data to collect serverless function domains.
Speci#cally, to address the challenge arising from the black-box
implementations, we #rst conducted empirical analysis on nine
leading cloud providers o!ering serverless functions (e.g., AWS,
Google, Tencent) [68, 77, 78]. By actively creating serverless func-
tions and reviewing the development documentation, we validated
the function URLs’ formats of each provider. Filtered by the format,
we ultimately identi#ed 531,089 serverless function domain names
in the PDNS data collected from April 2022 to March 2024. Based
on the identi#ed functions, we conducted a comprehensive investi-
gation into the usage patterns and misuse potential of serverless
functions across multiple providers to bridge these research gaps.
Main !ndings. With identi#ed serverless functions, we #rst ana-
lyzed their usage patterns based on resolution records. Our analysis
indicates that cloud functions are widely adopted, with over 1.55
billion invocations. Their active time is short and concentrated,
suggesting they are primarily used for stateless, short-term tasks.
To understand the current abuse status, we conducted controlled
active probing of these domain names and recorded the returned re-
sults. We primarily focus on identifying instances of cloud function
abuse involving illegal, malicious, or policy-violating activities. We
identi#ed four major abuse types, including covert C2 communica-
tion, hosting malicious websites, hiding illicit services, and using
egress nodes as IP proxies. These abuses leveraged the scalability
and $exibility of cloud functions to support low-cost and evasive
operations. They manifested in eight concrete cases such as host-
ing gambling platforms, reselling OpenAI API keys, and providing
proxy services to bypass geographic restrictions. These abuses af-
fected 594 cloud function domains across major cloud providers
like Tencent, AWS, Google, and Aliyun, with over 614k invocation
requests, highlighting a real-world threat.

Furthermore, our work shows that serverless cloud functions are
increasingly targeted by miscreants as a new cloud infrastructure,
yet defenses against such misuse have not kept pace. Only 0.67%
of the abused cloud functions were marked as malicious by Virus-
Total [38], highlighting poor awareness among cloud providers
and threat intelligence regarding serverless abuse. Moreover, our
#ndings reveal privacy leakage risks from unauthorized access on
cloud functions, identifying 394 instances of exposed sensitive data,
including access tokens, passwords, and Personally Identi#able In-
formation (PII). All identi#ed abuses were responsibly reported to
the a!ected vendors, with positive feedback from Tencent and AWS.
Finally, based on our #ndings, we provided three recommendations
for providers to better manage their cloud function services.
Contributions. Our contributions are as follows:
• Real-world Usage Analysis: Through the passive DNS dataset, we
built the #rst systematical dataset of serverless functions in the wild
based on domain formats, covering nine major providers over a
span of two years. Our analysis con#rmed the widespread adoption
of serverless functions and investigated implementation di!erences
across providers, especially ingress con#gurations.
• Comprehensive Abuse Review: Through active content analysis,
we uncovered four abuse scenarios of cloud functions, highlighting
their exploitation in the wild and their emerging role as infrastruc-
ture for the underground industry, which remains little recognized
by existing threat intelligence.

2 Background
Serverless cloud functions allow users to run code without manag-
ing servers, o!ering scalability and $exibility. To provide a clear
understanding of how these functions work, we describe their full
lifecycle in three stages: deployment, invocation, and execution, as
shown in Figure 1.

2.1 Deployment
As the initial stage in the cloud function lifecycle, the deployment
process (Step (a)) involves creating and con#guring the function.
During this phase, developers can deploy their code to the cloud
and de#ne parameters such as environment variables, memory allo-
cation, execution timeouts, and concurrency limits. There are three
primary ways to create cloud functions. The #rst is via the web
console, which allows code uploads in “.zip” format and includes
online editing. For complex environments, functions can also be
created from container images, providing $exibility in de#ning the
environment. Another method is through the command-line inter-
face (CLI), useful for automated deployments in CI/CD pipelines.
Lastly, some providers like Tencent and Google integrate with IDEs
such as Visual Studio Code, enabling developers to manage func-
tions directly within their development environment. Each method
o!ers distinct advantages for deploying serverless functions.

2.2 Invocation
Once deployed, the functions transition into the invocation phase
(Step (b)). Users, not just function developers, can invoke the func-
tions at any time in response to speci#c events or triggers. Generally,
most cloud providers allow users to access that cloud function di-
rectly with an HTTP request. One common invocation method is

64

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

Serverless
Cloud Functions

Invoke

Developers

(a) Deployment

Users

(b) Invocation

Function URL

API Gateway

HTTP Request Event Triggers
Cloud Storage

Message Queue

Scheduled Task
……

Direct Invocation
CLI
SDK

Console CLI IDE

Create

Execute

(c) Execution

Initialization

Allocate Resource

Load Function Code

Launch Runtime

Execution

Run Function Code

Termination

Release Resource

Users

Function URL Call

API Gateway

Function

Cloud Platform

ForwardingAPI Gateway Call

Different invocation paths for HTTP requests

Storage
……

Figure 1: Work"ow of using serverless cloud functions.

through a function URL, which creates a dedicated URL for each
function, allowing users to invoke it via standard HTTP requests,
such as GET or POST. Another HTTP invocation method uses API
gateway, which binds functions as the backend and routes incoming
HTTP requests through a generated REST API. Both methods facili-
tate the invocation of serverless functions, as illustrated in Figure 1.
API Gateway incurs additional costs but o!ers advanced features
such as caching, rate limiting, and custom authentication, making
it suitable for applications that need robust API management. In
contrast, function URLs provide a more lightweight HTTP endpoint
with Identity and Access Management (IAM) authentication, which
is ideal for quick invocations in smaller-scale applications.

In addition to HTTP(S) requests, serverless functions can be au-
tomatically triggered by speci#c events. Di!erent cloud providers
o!er varying types of event triggers. Common triggers include #le
uploads to cloud storage, message queues (such as AWS SQS [4]
or Google Pub/Sub [32]), and scheduled tasks. Besides these preset
triggers, serverless functions can also be manually invoked through
the web console or CLI for testing purposes. Furthermore, develop-
ers have the option to programmatically invoke serverless cloud
functions from other cloud services or applications via Software
Development Kits (SDKs). Since event-triggered functions lack ex-
posed endpoints and cannot be directly invoked externally, our
study focuses on those with HTTP(S) endpoints.

2.3 Execution
When an invocation occurs, the function runs on the cloud without
user intervention (Step (c)). To facilitate this, the serverless provider
dynamically allocates the necessary resources and launches an
execution runtime environment within isolated instances, such as
virtual machines or containers. The relevant function code and any
required dependencies are then loaded. Subsequently, the function
runs with the speci#ed input parameters to perform the designated
operations. After execution, the environment may be released of
if no further invocations are pending, ensuring optimal resource
utilization. Due to this working model, when a function is invoked
after a period of inactivity, it undergoes a “cold start”. This process
can introduce latency, as it involves the above whole initialization
phase. In contrast, if a function is invoked while an execution

environment is still active, it performs a quicker “warm start”, since
the resources are already allocated and ready for processing.
Price Model. Notably, serverless functions o!er developers a scal-
able, $exible, and cost-e!ective solution, allowing them to pay only
for actual executions. Typically, providers charge based on the
number of invocations and the computation costs during execution.
The computation cost is typically calculated as the product of re-
source usage (in GB) and execution time (in seconds), measured in
GB-seconds (GB-s). Potential resources include GPU usage, CPU
usage, memory usage, and disk usage. Actually, serverless function
pricing is relatively low, and most providers o!er free trials. For
example, AWS o!ers a free tier of 1 million requests and 400k GB-s
resources per month, with additional requests charged at $0.20 per
million and $0.0000166667 per GB-s. Similarly, Tencent o!ers a free
three-month trial for new users. This $exible pricing model makes
serverless functions appealing for a broad range of applications.

3 Methodology
To comprehensively reveal the (ab)use status of serverless functions,
the initial step is to gather a substantial dataset of cloud functions in
the wild. As shown in Figure 2, we began by empirically analyzing
nine leading serverless function providers and extracted the URL
formats of functions. Using these formats, we extracted relevant
domain names from the passive DNS (PDNS) dataset, which cap-
tures historical DNS queries and responses observed at recursive
resolvers. This data enabled analysis of serverless function usage
patterns through DNS resolution records. We then used active prob-
ing to collect response content and assess potential abuse.

URLFormat Passive DNS

Response

Filter

pdate

fqdn

rtype, rdata

first_seen, last_seen

request_cnt

Access

Leading Providers

Extract

Figure 2: Overview of the data collection process.

65

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

3.1 Function URL Format De!nition
As mentioned in Section 2, both function URLs and API Gateway
could generate URLs as an HTTP(s) endpoint to expose serverless
functions. However, due to the limitations of the API gateway (see
Section 3.5), we only analyzed function URLs to ensure an accurate
baseline measurement of the serverless function ecosystem.

Due to the lack of a uni#ed standard for function URLs, imple-
mentations of each vendor are heterogeneous. Therefore, we con-
ducted an empirical study to examine their practical designs, focus-
ing on URL structure. Based on market share statistics [68, 77, 78],
we selected nine major serverless function providers for our study,
including AWS Lambda [8] and Aliyun Function Compute [2], as
detailed in Table 1 (“Providers”). Notably, with the release of Google
Cloud Functions (2nd gen) [19], Google now has two function URL
formats, referred to as “Google” and “Google2”. Speci#cally, to ex-
amine the practical implementations, we created two serverless
functions on each provider and reviewed their development docu-
mentation. For Tencent, Aliyun, Azure, Oracle, and IBM, function
URLs are automatically generated upon creation. In contrast, AWS,
Kingsoft, and Google allow users to enable function URL invocation
during setup, while Baidu requires users to create a separate HTTP
trigger after creation and allows for a customizable path.

Based on our observations, we implemented provider-speci#c
URL formats to identify cloud functions, as shown in Table 1. De-
spite di!erences across providers, most URLs follow the pattern
< USER-Pre!x > . < Domain-Su"x > /< Path >, where the
𝐿𝑀𝑁𝑂𝑃𝑄-𝑅𝑆𝑇 𝑇 𝑃𝑈 identi#es the provider (e.g., scf.tencentcs.com for
Tencent). The 𝑉𝑅𝑊𝑋-𝑌𝑍𝑎 𝑇 𝑃𝑈 typically serves as an identi#er for
speci#c functions and may include user-de#ned components, such
as function names ([𝑏𝑐𝑂𝑁𝑎]) and project names ([𝑌𝑐𝑂𝑁𝑎]), as
exempli#ed by Aliyun. Alternatively, it can contain user-speci#c
information, such as a user ID ([𝑉𝑑𝑎𝑍𝑒𝐿]) or a randomly generated
string ([𝑋𝑂𝑄𝑓𝑀𝑁]), as seen in AWS. Some providers also incorporate
regional information ([𝑋𝑎𝑔𝑃𝑀𝑄]) in the𝑉𝑅𝑊𝑋↑𝑌𝑍𝑎 𝑇 𝑃𝑈 . Additionally,
the [𝑏𝑐𝑂𝑁𝑎], which can directly identify a cloud function, may
also appear in the 𝑌𝑂𝑕𝑖, as observed with providers like Google,
Azure, IBM, and Oracle.

3.2 Serverless Function Identi!cation
Based on the function URL formats, we identi#ed functions used
in real-world scenarios. We collaborated with 114 DNS, one of the
leading DNS providers in China, to obtain its PDNS dataset col-
lected from its extensive recursive resolvers, which handle about
600 billion DNS queries daily. While our dataset was obtained
through research collaboration, similar PDNS datasets (e.g., Far-
sight DNSDB [66] and Umbrella [17]) are also available for others
via paid services. In our study, considering the rise of serverless
functions, we requested data from April 2022 to March 2024.

In passive DNS datasets, each record is a tuple, like <fqdn (fully
quali#ed domain name), type, rdata, !rst_seen, last_s een, request_cnt,
and pdate>, indicating that on date pdate, the domain fqdn was re-
solved to rdata with type rtype, and observed request_cnt times
by recursive DNS resolvers. Each record is aggregated at the daily
level and includes the #rst and last resolution timestamps on that
date. In our study, we use the request_cnt #eld as an indicator of
function invocations. Due to caching at local resolvers [47], this

count represents a conservative lower bound on actual usage. For
targeted analysis, we further aggregated records for each provider
based on “fqdn”. This aggregation allowed us to calculate key met-
rics for each cloud function, including its #rst and last observed
times (“#rst_seen_all” and “last_seen_all”), the number of days it
was invoked (“days_count”), cumulative invocation counts (“to-
tal_request_cnt”) and the distribution of its resolution results.

Given the massive data size of the PDNS dataset, we converted
the URL format into regular expressions and selected records where
the “fqdn” matched these patterns. As shown in Table 1 (“Domain
Regular Expression”), these expressions were constructed based on
the de#ned elements from the URL format, such as the domain suf-
#x, delimiters, and the length of random strings. To validate these
patterns, we initially tested them on one day’s data and re#ned the
expressions until only valid cloud function domains were collected.
We then expanded our data collection to identify DNS records
related to serverless functions. Although we could not directly
identify speci#c cloud functions for providers that embed func-
tion identi#ers in the path (highlighted in blue), the data could still
re$ect the usage patterns of these providers’ cloud functions. Unfor-
tunately, Azure shares the domain su"x (“azurewebsites.net”) with
other web applications, making it di"cult to distinguish serverless
functions based on domain patterns alone. As a result, we excluded
Azure (shown in gray) from our data collection.

3.3 Active Information Collection
Passive DNS data can assist in understanding the scale and trends
of cloud function usage, but the speci#c usage purpose of cloud
function remains unclear, especially in abuse scenarios. Due to
our inability to access the original code of the cloud functions, we
could not directly ascertain their intended usage. As an alternative,
we attempted to actively access these functions and collect the
responses they return, to laterally understand their usage scenarios
and behaviors.
Active collection scope. As mentioned earlier, Google, IBM, Or-
acle and Azure’s functions need to be accessed by specifying a
speci#c path, which is not visible and available to us (highlighted in
blue in Table 1). Consequently, our active data collection focused on
the other #ve providers, including AWS, Google2, Tencent, Baidu,
Aliyun and Kingsoft.
Active collection method. To infer the intended usage of server-
less functions, we issued HTTP(S) requests to the collected function
domains and recorded their responses. Given the two-year span
of our dataset, some functions may behave di!erently now due to
developers’ initiative adjustments. As historical behaviors cannot
be reconstructed, we treat the current response as the function
content. To ensure ethical compliance, we limited access attempts
and used parameter-free GET requests, minimizing interference
with functions. We used the Python requests package to access each
endpoint via HTTPS, falling back to HTTP on failure. Domains
that failed both attempts were marked as unreachable. A uniform
timeout of 60 seconds was applied, following the default settings
of most providers [30, 39].

66

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

Table 1: The URL formats and domain regular expressions of serverless functions across providers.

Providers Launch Year
USER-Pre!x Domain-Su#x Path

Domain Regular Expression Generation Mode

Aliyun Function Compute [2] 2017
[FName]1-[PName]2-[Random].[Region] fcapp.run /

ˆ(.*)-(.*)-[a-z]{10}\.(.*)\.fcapp\.run$ Automatic

Baidu Cloud Function Compute [11] 2017
[Random].cfc-execute.[Region] baidubce.com /

ˆ[a-z0-9]{13}\.cfc-execute\.(.*)\.baidubce\.com$ Manual

Tencent Serverless Cloud Function [76] 2017
[UserID]-[Random]-[Region] scf.tencentcs.com /

ˆ[0-9]{10}-[a-z0-9]{10}-(.*)\.scf\.tencentcs\.com$ Automatic

Kingsoft Cloud Function [51] 2022
[Random].[Region] ksyuncf.com /

ˆ(.*)-(eu-east-1|cn-beijing-6).ksyuncf.com$ Optional

AWS Lambda [8] 2014
[Random].lambda-url.[Region] on.aws /

ˆ(.*)\.lambda-url\.(.*)\.on\.aws$ Optional

Google Cloud Function [34] 2017
[Region]-[PName] cloudfunctions.net [FName]

ˆ(asia|europe|us|australia|northamerica|southamerica)-(.*)-(.*)\.cloudfunctions.net$ Optional

Google Cloud Function (2nd gen) 2022
[FName]-[Random]-[Region] a.run.app /

ˆ(.*)-[a-z0-9]{10}-(.*)\.a\.run\.app$ Optional

IBM Cloud Function [42] 2016
[Region] functions.appdomain.cloud .../[FName]

ˆ(us-south|us-east|eu-gb|eu-de|jp-tok|au-syd)\.functions\.appdomain\.cloud$ Automatic

Oracle Cloud Functions [65] 2019
[Random].[Region] oci.oraclecloud.com .../[FName]

ˆ[a-z0-9]{11}\.(.*)\.functions\.oci\.oraclecloud\.com$ Automatic

Azure Function [10] 2016
[PName] azurewebsites.net .../[FName]?code=Key

ˆ(.*)\.azurewebsites\.net$ Automatic
1 FName is short for Function Name.
2 PName is short for Project Name.
* Due to PDNS’s lack of URL path observation, we excluded gray-marked providers from data collection and blue-marked providers from active access.

3.4 Active Data Analysis
The goal of collecting cloud function responses is to infer their in-
tended usage from an external perspective, particularly to identify
potential misuse. In our study, we focus on abuse scenarios where
adversaries deploy serverless functions on public cloud platforms
to support malicious, illegal, or policy-violating activities (i.e., vio-
lating cloud provider terms of service). Attacks that exploit cloud
platform vulnerabilities are beyond the scope of this study.

Identifying such misuse and extracting meaningful insights from
large-scale data without prior knowledge is challenging. To address
this, we #rst categorized the content into four types based on textual
patterns: JSON, HTML, Plaintext, and Others. These types provide
rough clues about function purposes. JSON often indicates API
responses, HTML suggests webpage generation, and Plaintext may
contain logs or textual output. To reduce manual e!ort, we applied
hierarchical clustering within each content type to group similar
responses. Each response was converted into a TF-IDF vector, and
pairwise similarity was measured using cosine distance. We then
used agglomerative clustering with average linkage [63], setting a
90% similarity threshold (cosine distance < 0.1) based on manual in-
spection. This e!ectively grouped near-duplicates while preserving
meaningful di!erences, resulting in 4,512 clusters and signi#cantly
reducing manual workload. Subsequently, two security experts (one
with 5–10 years of experience and another with 3–5 years) were

involved. Their task was to identify cloud functions containing sus-
picious content or related to illicit activities (e.g., gambling, fraud,
etc.). Following the independent reviews, a collaborative discussion
was held to resolve disagreements and #nalized con#rmed misuse
cases. Then, for each abuse type, we summarized the characteristic
patterns to further identify more instances within our active access
data. By combining the resolution records from the PDNS dataset,
we con#rmed the real-world impact of these abuses.
Exclusion of sensitive data. Considering that cloud functions
may handle sensitive information like other cloud services [13], we
proactively mitigated ethical risks before analysis. To this end, we
initially used EarlyBird [28], a tool designed for detecting sensitive
data within source code repositories, to scan for exposed personal
or sensitive information in function content. Any identi#ed sensi-
tive data were anonymized using MD5 hashing, with a salt string
of 10 random characters, which is detailed in Appendix A. Func-
tions without sensitive data were treated as publicly accessible and
proceeded to analyze their returned content.

3.5 Limitation
Using this data collection process, we constructed the currently
known unique dataset targeting the cloud function domain names
in the wild. However, we must acknowledge that our work still has
certain limitations.

67

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

• Selection of service providers. In this work, our data collec-
tion focused on nine major cloud function providers. While we
overlooked some other providers, the chosen nine maintain the
largest market share in cloud functions [68, 77, 78], indicating they
have the most substantial user bases and are therefore the most
representative. Thus, we believe these providers re$ect a diverse
array of both Chinese and internationally recognized serverless
products, o!ering a su"ciently broad view of the ecosystem.
• Exclusion of API Gateway. API Gateways are often used to
trigger serverless functions. However, as independent products,
they are not limited to serverless functions and could connect to
diverse backend services. It is di"cult to reliably identify whether
the backend of an API gateway is a serverless function. Therefore,
to avoid introducing false positives (i.e., other cloud services) into
our observations of serverless functions, we excluded API Gateway
from our study on the current (ab)usage of serverless functions.
• Regional biases of passive DNS. As with any passive DNS
dataset, our analysis is constrained by the geographic location of the
recursive resolvers [85]. The PDNS data we used primarily serves
users in China, which may bias observations toward local usage
patterns and a!ect certain trends or scale estimates in Section 4.1.
However, since the cloud providers we analyzed operate globally,
the observed practices and abuse patterns are not limited to this
regional scope, and our #ndings still o!er new insights into the
(ab)use of cloud functions from a broader perspective.
• Restricted active data. Due to the limitations of the PDNS
dataset, we can only observe the domains of serverless functions. As
a result, some functions were unable to be invoked via our HTTP(s)
requests because of missing paths or query parameters, reducing
the size of the analyzable response set. Additionally, access control
and function availability (a!ected by the two-year data collection
window) further limited valid responses and complicated intent
inference. Nonetheless, our non-intrusive probing approach o!ers
a practical and ethical way to assess function (ab)usage at scale,
and the breadth of the dataset supports preliminary yet meaningful
insights. This remains the only viable way to infer function behavior
from an external vantage point.

4 Overall Usage Status
In this section, we depict the usage status of serverless cloud func-
tions through statistical analysis, including the trends in usage,
practical ingress infrastructure, invocation pattern, and the current
invocation status of these functions.

4.1 Evolving Trend of Serverless Function

Finding 1: Serverless cloud functions are widespread and evolve
as the market grows. Providers’ updates on service features and
policies could directly impact their usage.

Adoption scale. Based on our identi#cation method, we #ltered
a total of 536,181 serverless functions from nine providers in the
PDNS dataset spanning from April 2022 to March 2024. From a
temporal perspective, the overall usage of cloud functions exhibits
a growth trend as shown in Figure 3. Notably, in April 2022, the in-
troduction of function URLs in AWS Lambda [5] led to a substantial
increase in newly observed functions. As introduced in Section 2.2,

invoking cloud functions through the HTTP(S) endpoints begins
with a DNS resolution query for the target function domain. Accord-
ingly, we approximated the invocation number of cloud functions
by counting the observed DNS resolution queries in the PDNS. Over
the two years of data collection, the total invocation count for these
536k functions exceeded 1.55 billion times, indicating a signi#cant
adoption scale.

Figure 3: Monthly statistics of cloud function counts. (“Newly
observed FQDNs” were calculated as the daily additions com-
pared to the previous day. The !gure shows their monthly
cumulative totals.)

Release of Google2

Release of AWS Function URL

Google2 being Default Option

Changes on Free Trial

Release of Kingsoft Function URL

Release of Tencent Function URL

Figure 4: Invocation trends of di$erent cloud functions.

Evolving trend. The evolution of serverless cloud functions is
driven by market development. As shown in Figure 4, usage across
most providers remains stable, with Google and Aliyun leading.
Due to the regional limitations of PDNS, we refrain from estimating
the market share of providers. Meanwhile, our data indicates the
emergence of new players in the market. Kingsoft and Tencent
began to appear with cloud function resolutions in August 2022
and August 2023, respectively, aligning closely with their o"cial
announcements regarding the release of function URL [31, 43].
Moreover, user adoption of cloud functions is heavily in$uenced by
providers’ strategies, with adjustments in these strategies quickly
re$ected in their invocation patterns. The sharp decline of Tencent
in January 2024 was likely due to the alteration of its free trial
quota distribution model [1]. Additionally, Google2 was released
in February 2022 [19], just two months prior to our measurement
period, which led to a slight spike in usage. Another signi#cant
increase was recorded in August 2023, coinciding with Google’s
announcement that Google2 had become the default option in the
Google Cloud Console user interface [18]. In contrast, despite IBM’s
December 2023 announcement to deprecate its cloud functions

68

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

service [27], no signi#cant decline was observed by March 2024,
possibly due to IBM’s continued support for existing functions until
October 2024.

4.2 Practical Ingress Infrastructure
To enable dynamic resource allocation, providers use ingress nodes
in data centers to route user requests. Our DNS resolution log data
allows us to systematically reveal the ingress infrastructure con-
#gurations of each provider. The overall resolution types for each
cloud function are shown in Table 2 (“Total”). When successfully
resolved, cloud functions may correspond to an IP address (A or
AAAA records) or a CNAME domain (CNAME records), both re-
ferred to as ingress nodes. While IPv6 adoption is increasing [23],
our results show IPv4 is still the preferred method, with AAAA
records (17.54%) signi#cantly lower than A records (61.00%). AAAA
records were only observed for AWS, Google, and IBM. Additionally,
providers like Aliyun, Tencent, Baidu, and IBM favor load-balancing
DNS with CNAMEs in over 70% of responses, whereas Kingsoft,
AWS, Google, and Oracle always return direct A or AAAA records.

Finding 2: Ingress nodes exhibit a distinct geographical concen-
tration. Functions within the same region are typically assigned
to the same limited set of ingress nodes.

Regional service providing. Serverless cloud functions typically
adopt a region-based architecture to enhance performance and
reduce latency. A “region” refers to a geographic area served by
one or more data centers, with providers allowing users to choose
regions closer to their target audience. As detailed in Section 3.1,
most providers embed region identi#ers in function domain names,
such as “cn-shanghai” (Shanghai, China) and “eu-west-1” (London,
UK) in Aliyun functions. We extracted region information from
these domain names and analyzed it alongside DNS resolution re-
sults. As calculated in Table 2 (‘’Regions”), the supported regions
of providers vary signi#cantly. For example, functions from Baidu
are concentrated in three cities in China (i.e., Beijing, Shenzhen,
and Suzhou), while global providers like AWS cover nearly all
regions except Antarctica. Moreover, serverless functions within
the same region are resolved to the same set of ingress nodes lo-
cated in that area. Speci#cally, if a CNAME domain is resolved,
it includes geographic parts that match the cloud function. For
example, “gz” is the geographic part of one CNAME result from
Tencent (“gz.scf.tencentcs.com”). Likewise, the location of resolved
IP addresses also align with the cloud function’s region.

We also counted the number of observed ingress nodes in each
region. Most providers exhibited a concentrated pattern, with 1
to 3 #xed IP addresses or CNAME domains con#gured to handle
all function requests for a region. The top 10 resolution results
accounted for nearly all requests for each type, as shown in Ta-
ble 2 (“Top10”), highlighting this characteristic. In contrast, AWS
displays a more dispersed resolution pattern, featuring a greater
number of unique results. Speci#cally, AWS has 2,082 IPv4 and 2,579
IPv6 ingress nodes in ap-northeast-1 (Tokyo), while other popular
regions like eu-west-1 (Ireland) and us-east-1 (Virginia) also exceed
1,000 ingress nodes. In stark contrast, Google operates with only
one ingress node and resolves all requests to a single IPv4/Ipv6

address regardless of region. Google2 expands this to four nodes
but still ignores regional distinctions. Additionally, Google’s ingress
IP addresses are con#gured in anycast mode, routing requests to
the nearest node, which di!ers from the region-based approach of
other providers.

Finding 3: Ingress nodes for serverless cloud functions exhibits
signi#cant reliance on third-party network infrastructure, which
may introduce potential security risks.

Reliance on third-party infrastructure. Third-party infrastruc-
ture is commonly used in cloud services to quickly and cost-e!ectively
expand their global coverage [88]. We observed such dependencies
in cloud functions as well. Generally, the resolved ingress nodes
(i.e., IPs or CNAME domains) belong to the corresponding cloud
providers, representing the data centers of these providers. How-
ever, Baidu and Kingsoft leverage the infrastructure from China’s
three major telecom operators (i.e., China Telecom [15], China Uni-
com [16], and China Mobile [14]) as the ingress nodes. Similarly,
IBM utilizes Cloud$are [20], a global content delivery network
(CDN) provider. While third-party services improve e"ciency, im-
proper management of such dependencies can pose signi#cant
security risks [45, 60].

4.3 Invocation Pattern of Serverless Task
Finding 4: The active time of cloud functions is short and rela-
tively concentrated, indicating that they are generally employed
for stateless short-term tasks.

Invocation frequency. Next, we analyzed the invocation pat-
terns of cloud functions based on the “total_request_cnt” per func-
tion. Google, IBM, and Oracle were excluded from this analysis
as their domains could not be uniquely associated with speci#c
cloud functions. Regardless of the provider, invocation frequency
demonstrated a long-tail distribution as shown in Figure 5. 78.14%
of the functions were invoked less than #ve times, with the peak in
the histogram occurring between 3 and 6 invocations, suggesting
that most of the functions may have been used for one-o! tasks or
testing. Only 7.87% were called more than 100 times, which may be
used for long-running tasks or in high-demand applications. While
invocation frequency can provide some insight into the function’s
purpose, determining the exact use case based on frequency alone
is di"cult, as cloud functions are stateless and often follow random
invocation patterns.
Lifespan. For the lifespans of the serverless functions, we calcu-
lated the time interval between “#rst_seen_all” and “last_seen_all”
to represent the duration of time the serverless function was active.
This part of the analysis also needs to exclude Google, IBM, and
Oracle. The results show that only 0.34% (14 functions) remained
active throughout the entire measurement period (730 days). In con-
trast, most functions (83.94%), appeared for fewer than #ve days,
with 81.30% active for only a single day. This distribution aligns
closely with invocation frequency, indicating that the majority of
functions are likely intended for ad-hoc use, rather than for sus-
tained or repeated tasks. The average lifespan was found to be 21.44
days, further underscoring the transient nature.

69

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

Table 2: The usage and resolution results of cloud functions across providers.

Providers Domains All Request Regions
rtype=1 (A) rtype=5 (CNAME) rtype=28 (AAAA)

Total1 rdata_cnt2 Top10 3 Total rdata_cnt Top10 Total rdata_cnt Top10

Aliyun 59,404 440,860,944 21 27.96% 65 93.57% 72.04% 44 95.54% 0 1 100%

Baidu 753 17,005,075 3 22.47% 10 100% 77.53% 3 100% 0 / /

Tencent 6,154 3,024,609 22 23.89% 35 95.70% 76.11% 36 92.03% 0 / /

Ksyun 123 4,044 2 100.00% 4 100% 0 / / 0 / /

AWS 19,683 346,651,678 22 76.73% 10914 1.79% 0 / / 23.27% 17312 2.14%

Google 120,603 543,330,521 37 76.41% 1 100% 0 / / 23.59% 1 100%

Google2 324,343 199,308,250 37 66.75% 4 100% 0 / / 33.25% 4 100%

IBM 6 107,421 6 10.15% 6 100% 87.55% 6 100% 2.30% 6 100%

Oracle 14 2,080,577 5 100.00% 31 57.97% 0 / / 0 / /
1 Total represents the proportion of requests for this type.
2 rdata_cnt indicates the total count of all possible “rdata” for this type.
3 Top10 shows the percentage of total requests contributed by the top 10 most frequent “rdata”.

The most concentrated data range
corresponds to 3.35 to 6.13
requests, covering 73.51%
(301,714/410,460) of total requests.

Figure 5: Cumulative and histogram distribution of func-
tions total request counts (The values on the X-axis represent
log10 (Total Request Count)).

Furthermore, we examined the activity density of these functions
by calculating the proportion of days with recorded invocations
within their respective lifespans (𝑗 = 𝑓𝑂𝑘𝑑_𝑙𝑀𝑆𝑄𝑕/
(𝑚𝑂𝑑𝑕_𝑑𝑎𝑎𝑄_𝑂𝑚𝑚↑ 𝑇 𝑃𝑍𝑑𝑕_𝑑𝑎𝑎𝑄_𝑂𝑚𝑚)). A notable 83.01% of the functions
demonstrated continuous activity, with steady invocation (𝑗=1),
while the remaining functions showed intermittent usage patterns.
In the most extreme cases, there were four functions exhibited
lifespans exceeding 603 days (90% of the measurement period) with
only one or two invocations. Despite their long lifespans, these
functions were rarely used, further reinforcing that most cloud
functions are designed for short and stateless tasks.

4.4 Current Invocation Status
Using the active data collection method in Section 3.3, we suc-
cessfully connected with 410,460 cloud functions, covering ma-
jor providers such as AWS, Aliyun, Baidu, Tencent, Kingsoft, and
Google2. Notably, 2.03% of cloud functions were unreachable, due
to network restrictions (internal access only) or timeouts. Addition-
ally, 19.12% (1,597/8,351) of the unreachable functions were caused
by DNS resolution failures following function deletions. All of these
functions belong to Tencent, which is the only provider without

wildcard resolution enabled for its primary domain (“scf.tencentcs.com
”), making deleted cloud functions non-resolvable.

Among the reachable functions (402,109), 99.82% supportedHTTPS,
re$ecting a strong emphasis on security. Figure 6 shows the re-
sponse codes distribution. Notably, As shown in Figure 6, 89.31% of
functions returned 404 (Not Found), likely due to our use of default
GET requests without parameters. Other causes include missing
paths or deleted functions. While most providers return 404 for
deleted functions, AWS returns 403 (Forbidden) instead. Server er-
rors, particularly 502 (Bad Gateway), accounted for 2.82%, with
AWS exhibiting the highest proportion at 50.56%. These errors may
result from unhandled programming exceptions or failures of de-
pendent services [7, 40, 54]. Besides, only 3.14% of cloud functions
returned 200 (Success) status codes, indicating successful invoca-
tions. Among them, 96.01% (12,138/12,642) were non-empty and
were the primary focus of the abuse analysis based on content.

Figure 6: Distribution of top 10 frequent HTTP codes.

5 Abuse Status
In this section, we further analyzed the abuse status of 12,138 server-
less functions with non-empty responses. Functions enabling mali-
cious, illegal, or policy-violating activities were classi#ed as abused.
To mitigate ethical risks, we followed the method in Section 3.4 and

70

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

#rst anonymized sensitive information prior to large-scale review.
Speci#cally, we identi#ed 394 sensitive data, including 8 phone
numbers, 5 national identi#cation numbers, 82 access tokens, 156
API keys, 16 potential passwords, and 127 network identi#ers (e.g.,
IP and MAC addresses). The exposure of tokens or keys is the most
common issue, accounting for 60.4%.

Finding 5: Unauthorized access is prevalent in cloud functions
and can lead to DoS and DoW threats, as well as signi#cant risks
of privacy leakage.

Unauthorized access threat. Such privacy leakages are attributed
to unauthorized access, which is a prevalent issue in cloud envi-
ronments [29, 50, 53]. According to the access status, only 0.13% of
the functions returned a 401 (Unauthorized) status, suggesting that
access restrictions are largely absent or overlooked. In this threat
model, we assume that attackers can easily obtain domain names
or URLs of serverless functions from open sources like GitHub or
search engines. If these functions lack necessary access controls,
attackers can directly send requests using web browsers and any
other HTTP clients, leading to potential data leaks. Additionally,
due to the billing model, this can result in unexpected charges for
developers, known as Denial of Wallet (DoW) [48]. Attackers may
also exploit unsecured functions to launch large-scale access re-
quests, causing Denial of Service (DoS) attacks that disrupt normal
user access.

After excluding the sensitive data, we started our content review
by aggregating the data. Overall, JSON types were the most preva-
lent at 36.98%, followed by HTML at 31.54% and Plaintext at 30.34%.
The “Others” category, comprising 1.15%, included JavaScript, XML,
and PHP. Based on our clustering method detailed in Section 3.4,
we got 4,512 clusters in total. Our review disclosed four abuse
scenarios, including covert C2 communication, hosting malicious
websites, hiding illicit services behind serverless functions, and
abusing egress nodes as IP proxies.

5.1 Abuse I: Covert C2 Communication
Finding 6: Serverless cloud functions are exploited by malware
attackers. We identi#ed 16 active C2 servers on serverless plat-
forms, generating 273,291 requests, highlighting their role as
malware infrastructure.

C2 (Command and Control) server acts as a central point to
control infected devices (e.g., in a botnet). To evade detection, at-
tackers often use covert C2 channels to hide the communication.
Recently, cloud functions have increasingly been abused for this
purpose, serving as proxies between victims and the real C2 servers.
Their architecture provides anonymity, as outbound tra"c appears
to come from trusted cloud providers, masking both source and
destination. This makes detection more di"cult, with malicious
tra"c routed through legitimate platforms. In practice, attackers
embed C2 endpoints directly in the function code (e.g., Algorithm 1),
enabling seamless relay without exposing real server IPs.

To identify C2 servers in cloud functions, we relied on communi-
cation #ngerprints rather than response content. We used a #nger-
print database from awell-known security company (QiAnXin [67]),

which contains 26 signatures across 18 C2 families and o!ers broader
protocol and port coverage than tools like CyberProbe [64] and
C2Miner [25]. The #ngerprints were constructed by clustering traf-
#c from 850 C2 malware in a sandbox. Each #ngerprint is based on
the #rst full request-response pair after a TCP handshake and cap-
tures binary-level communication patterns of a malware family’s
C2 protocol, such as headers, token sequences, and #eld delimiters.
These patterns can be repurposed as active probes that emulate
family-speci#c C2 requests.

To match #ngerprints, we connected to each cloud function
domain on ports 80 (HTTP) and 443 (HTTPS), sent probe pay-
loads for di!erent malware families, and collected the responses.
By matching the tra"c #ngerprints from these responses, we iden-
ti#ed 16 functions used to conceal C2 communications, speci#cally
linked to the Cobalt Strike and InfoStealer families. The majority of
these functions were deployed on Tencent, with a single instance
found on Google2. Notably, this method can only identify active C2
servers, limiting the detected number to a lower bound. However,
with 273,291 total requests and an average of 112 calls per day to
these functions, our #ndings demonstrate real-world abuse beyond
previously reported speculation [6].

5.2 Abuse II: Hosting Malicious Websites

Finding 7: The convenience of cloud functions reduces the cost
of deploying malicious websites. We identi#ed 206 malicious
websites hosted on cloud functions, covering various types of
threats, with over 37k requests.

The minimal server management and pay-as-you-go pricing of
cloud functions signi#cantly lower deployment costs, making them
attractive to malicious website operators. Additionally, because
domain names and infrastructure are hosted by reputable providers,
such abuse is harder to trace and block. To investigate this misuse in
practice, we applied keyword-based #ltering to identify potentially
suspicious function responses. This #ltering focused on domains
commonly host illegal or malicious websites, including gambling,
pornography, and cheating, which are prevalent in online abuse and
generally exhibit clear semantic signals. Each candidate was then
manually reviewed by two analysts, who assessed both page struc-
ture and content semantics to determine intent and functionality.
Con#rmation required clear indicators, such as gambling interfaces,
pornographic content, cheating tools, or language and branding
directly associated with these areas. Only cases with consistent
agreement and clear evidence were labeled.

In total, we identi#ed 206 malicious websites hosted on cloud
functions, with a combined 37,774 resolution requests. These sites
fall into three main categories. First, based on gambling-related
keywords such as “Slot” and “Betting”, we con#rmed 194 such
sites, as illustrated in Figure 8 in Appendix B. These sites are pri-
marily hosted on Google2 and exhibit clear campaign consistency.
They have highly similar structures, extensively use “google-site-
veri#cation” elements, and employ keyword stu"ng techniques
for search engine optimization (SEO). Further analysis of the gam-
bling domain resolution records revealed a total of 24,979 calls,
indicating widespread access. On average, their functions remained
active for 311.39 days, with some lasting up to 544 days, suggesting

71

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

they went undetected while continuing to receive tra"c. Addition-
ally, using keywords such as “porn”, “sex”, and “av”, we identi#ed
six pornographic websites, one adult gaming site, and one Google
Maps-based directory of adult stores across Taiwan. The calls to
these websites are distributed across 79 days between July 2022
and October 2023, with a total of 854 requests. Furthermore, we
observed four cloud functions being utilized to create interactive
front-end pages for cheating tools. These included applications
for changing email addresses, age modi#cation, and veri#cation
generators designed to bypass parental controls for minors, which
are commonly used in online games. Although the number of such
tools is limited, the passive DNS data reveals signi#cantly higher
usage, with a total of 11,941 calls.

5.3 Abuse III: Hidden Illicit Service
Finding 8: Cloud functions are used to disseminate hidden
illegal services. They redirect users to illicit websites or contain
promotional information in their responses.

Leveraging the ease of development and low-cost advantages as
well, some cloud functions are being used to hide illegal services.
We identi#ed two methods of covert information dissemination
within cloud function responses. One involves redirecting requests
to a new link, while the other embeds promotional text with contact
information in the response content. These methods guide users to
the underlying illegal services. We observed 267 cloud functions
involved in this activity, with a total of 123,086 requests.
Redirecting to concealed websites. Based on the active access
con#rmation, we identi#ed 19 cloud functions that directly returned
a redirect link within their response. As some functions contain
multiple links, we con#rmed 80 unique URLs in total. The majority
of them were associated with FXBTG, an online forex and cryp-
tocurrency trading platform that has been blacklisted by the Central
Bank of Ireland since October 2018 [82]. Other hidden services in-
cluded #nancial sites, token-based casinos, and a site that o!ers free
novels via video format. These functions were frequently accessed,
with a total of 16,652 invocations. The average active duration is
152.26 days, showing that they are relatively stable in directing
tra"c to concealed illegal services.

Moreover, abusers may also use scripts like “location.href” or
<meta http-equiv=“refresh”> tag for automatic redirects. The tar-
get domains can be static or dynamically generated randomly as
exempli#ed in Table 4 in Appendix B, making tracking harder.
Furthermore, once the concealed domain is blocked, abusers can
easily promote a new one by updating the cloud function code.
During our analysis, we extracted 13 redirected URLs. Excluding
those that were inaccessible or redirected to well-known websites
(e.g., www.sogou.com), three were $agged as potential malicious
websites by McAfee Webadvisor [61], while one o!ers a gray ser-
vice that allows users to watch ad-free anime and purchase game
recharges and items. During the measurement period, each function
was only called for 1 or 2 days, totaling 119 invocations. Despite
low activity, these functions e!ectively conceal true domains and
evade content-based detection.

Hidden promotion information.We identi#ed a speci#c abuse
scenario involving the promotion of OpenAI API Key sales, partic-
ularly in Aliyun serverless functions, with a total of 243 instances.
These texts typically follow the format: “To purchase an API key
(e.g., sk-s5S5BoV...), contact via [contact information]”. We collected
28 distinct contact details, including WeChat, QQ, and email ad-
dresses. Repeated use of the same contact suggests group a"lia-
tion [58, 87], and our aggregation analysis shows clear clustering.
Notably, the biggest group used one single WeChat across 157 func-
tions. Miscreants registered a large number of cloud functions to
promote the same information, maximizing exposure and dispers-
ing risk, while keeping costs low. In addition to selling API keys,
one group (comprising 14 functions) directly sold OpenAI accounts,
claiming that for 10 RMB, users could purchase an account with an
$18 credit for a trial.

ChatGPT was release
on November 30, 2022

Figure 7: Trends in the misuse of cloud functions for the
resale of OpenAI API Keys.

Through the passive DNS data, we observed that this abuse
scenario #rst appeared in January 2023, just two months after the
release of ChatGPT [84], and remained highly active until May 2023,
as shown in Figure 7. The total request count for these functions
reached 106,315, underscoring the scale of the abuse. We speculate
the resale of OpenAI API keys is driven by restrictions on Chi-
nese users, as OpenAI does not support local credit card payments.
This has fueled a resale market for API keys and OpenAI accounts.
Abusers pro#ted through resale, with the largest abuse group ex-
plicitly stating that they earned 2 RMB for every 10 RMB spent
in the transactions. Additionally, some reports suggest that sellers
may use stolen credit cards to acquire the keys [44]. Furthermore,
this uno"cial service carries the risk of fraud, as buyers may pay
for the keys but fail to receive the promised API access.

5.4 Abuse IV: Egress Nodes Abuse

Finding 9: Cloud functions exploit multiple egress IPs to create
anonymous proxies, enabling them to support illegal services
and bypass geographic restrictions.

In addition to the convenience of cloud functions, abusers could
exploit the egress nodes of cloud functions. Due to the automatic
scaling, providers dynamically allocate egress IP addresses when
these functions make external network requests. Therefore, cloud

72

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

functions are an ideal infrastructure for deploying IP proxies, as
each instance may be assigned di!erent egress IP addresses.
Supporting illegal activities. According to the services agree-
ments of cloud providers [3, 9, 12, 33, 52, 75], using serverless func-
tions for proxy construction is allowed, but they must not be used
for illegal activities. Through our analysis of serverless functions,
we identi#ed at least 20 functions acting as proxies for underground
services, such as scraper services, a Ticketmaster puppeteer service
that automatically purchases tickets on Ticketmaster, watermark-
free downloads of TikTok videos, and free music downloads from
Kuwo Music/QQ Music. These services violate both the terms of
cloud providers and those of the target platforms [59]. From the
perspective of the target platform, each request is from a di!erent
cloud IP addresses, e!ectively bypassing restrictions based on IP
access frequency.
Bypassing geo-restrictions.Due to the geographic resolution, the
outbound IPs usually align with the region of the cloud functions,
regardless of the user’s location [86]. This feature can be utilized
to bypass regional restrictions. Within our data, OpenAI proxies
are the most prevalent. By searching for keywords “OpenAI” and
“ChatGPT”, we manually con#rmed 61 relevant functions and cate-
gorized them into two types. The #rst type includes 14 functions
that create OpenAI frontends, o!ering users interfaces for interact-
ing with OpenAI services. The second category includes 47 cloud
functions that make simple requests to OpenAI, returning infor-
mation such as API initialization or help messages. For example,
“This is a simple web application that interacts with OpenAI’s chatbot
API. Enter a message in the input box below”. These functions act as
intermediaries between users and OpenAI, forwarding user inputs
to OpenAI while returning the generated responses back to users.

Similarly, we identi#ed one GitHub proxy and four VPN proxies,
which are also used to bypass geo-restrictions. Such abuse cases
are particularly relevant in China, mainly due to the Chinese Great
Firewall (GFW), which limit domestic users’ access to OpenAI,
GitHub2, and other websites. By hosting serverless functions in
speci#c regions, users can route their requests through the allocated
IPs to circumvent these restrictions. We examined the region part of
these function domains and observed that they were all con#gured
in regions outside of China, further con#rming the characteristics
of this abuse. Moreover, these functions processed a total of 10,873
requests, indicating their signi#cant usage.

5.5 Defense Gap of Serverless Abuse

Finding 10: The monitoring capabilities for serverless function
abuse exist notably gaps, with only four identi#ed cases $agged
as malicious by VirusTotal.

By reviewing the returned content, we #nally identi#ed four
abuse scenarios and eight speci#c cases, as summarized in Table 3.
With rapid deployment, low costs, and multiple egress IPs, server-
less functions o!er a means to evade detection and conceal illegal
actions. In total, among the content-rich functions we analyzed,
4.89% (594/12,138) were found to be abused, showing signi#cant
real-world impact with over 614k requests from users. Google and

2Although GitHub is not blocked, its content delivery network (CDN) servers are
located overseas, leading to slow access for users in China.

Table 3: Overall statistics of abused cloud functions.

Type Cases Functions Requests
Abuse I Hide C2 server 16 273,291

Abuse II
Gambling Website 194 24,979
Porn-related Sites 8 854
Cheating Tool 4 11,941

Abuse III Redirct to New Domains 23 16,771
Resale of OpenAI Key 243 106,315

Abuse IV Illegal Service Proxy 20 170,195
Geo-bypass Proxy 86 10,873

Total 594 614,219

Aliyun are the most frequently abused providers, with a high num-
ber of functions used to host gambling websites and promote API
key resale. All these abuses clearly violate cloud providers’ terms
of service [3, 9, 12, 33, 52, 75]. However, VirusTotal [38] $agged
only four functions (used for C2 communication) as malicious, indi-
cating insu"cient detection from providers and threat intelligence
services. Our work highlights the current state of cloud function
abuse, showing that serverless cloud functions are increasingly tar-
geted by cybercriminals and serve as a new infrastructure for illegal
activities. We reported the abuse cases to a!ected providers and
received supportive responses from Tencent and AWS. Although
AWS noted the content was user-managed, they indicated a will-
ingness to assist in review and remediation e!orts. Overall, the
responses re$ect a recognition of the risks, and we hope this work
can help raise broader awareness within the security community.

6 Discussion
According to the measurement of serverless functions across nine
providers, we gain insight into the fundamental usage patterns and
identify potential abuse scenarios. In light of these #ndings, we
would like to suggest the following recommendations to improve
the management of cloud functions.
• Strength the supervision of cloud function abuse. Since all
mentioned abuse cases stem from user actions, strengthening su-
pervision is the most direct approach. While Aliyun and Tencent
conduct random inspections as required by the Chinese govern-
ment, we still observed ongoing misuse, suggesting that current
measures are insu"cient. Speci#cally, providers should incorporate
additional review steps during the creation of functions. If the code
shows typically abusive patterns, like hiding C2 communication,
developers should be alerted to recti#cation. Sensitive terms related
to underground industries should be monitored as well. While such
measures may raise concerns about privacy violations, they can be
mitigated through clear disclosures and obtaining informed consent
from developers during function creation.
• Secure the serverless architecture. The security of the cloud
function itself is crucial. “Warmonger” attack [86] highlighted how
shared outbound IP addresses in serverless architectures can fa-
cilitate denial-of-service attacks. Our DNS-based analysis shows
diverse resolution strategies across providers, with no uni#ed stan-
dard. Some rely on third-party infrastructure, highlighting the need
to secure these dependencies. Providers should also disable wildcard
resolution and ensure DNS records are removed when functions

73

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

are deleted. Restricting resolution to active functions can better
protect ingress nodes and reduce unnecessary load.
• Enhancing the requirements of access control. To mitigate
potential data leaks from cloud functions, strengthening access con-
trol is crucial. Users should implement proper access restrictions
and avoid embedding sensitive personal information in publicly
accessible functions. The responsibility not only lies with users
but also with platforms. Actually, providers such as Aliyun, AWS,
and Google enforce default authentication when deploying func-
tions, typically through IAM. Moreover, for AWS, if a user actively
changes the setting to “None”, a prominent red warning box ap-
pears to alert them that publicly accessible cloud functions may be
$agged as a risk. In contrast, Baidu sets the default access to publicly
accessible and provides no warning to users. Therefore, we recom-
mend setting default access control and clearly informing users of
the risks associated with making functions public. Alternatively,
embedding authentication parameters in the default function URLs,
as seen with Azure, could also enhance security. This shifts the re-
sponsibility for permission con#gurations to the provider, ensuring
mandatory user veri#cation upon each function invocation.

7 Related Work
Serverless functions have gained signi#cant attention from academia
and industry as a novel computing paradigm. In 2016, Hendrickson
et al. [37] initiated the #rst analysis of AWS Lambda, highlight-
ing that this new paradigm brings notable challenges to execu-
tion engines, databases, and schedulers. Following this founda-
tional work, numerous measurements studies have expanded upon
serverless computing, particularly focused on AWS Lambda [73],
Azure Functions [71] and Huawei serverless services [46]. These
studies emphasize the workload patterns to reveal the underly-
ing architecture of FaaS platforms. Furthermore, Wang et al. [81]
conducted a comparative analysis of AWS Lambda, Azure Func-
tions, and Google Cloud Functions, o!ering insights into the perfor-
mance di!erences across providers in terms of scalability, cold start
latency, and resource e"ciency. Similarly, Mcgrath et al. [62] de-
veloped a performance-oriented serverless computing platform to
study serverless implementation considerations and provide a base-
line for existing platform comparison. As serverless architectures
evolve [74], further research have proposed optimization strate-
gies on orchestration [57], startup latency [72, 79], and messaging
mechanisms [22]. Moreover, there are ongoing e!orts [26, 36] to
integrate serverless functions with edge computing to empower
the proliferation of IoT devices.

Our work o!ers a comprehensive analysis of serverless func-
tion usage and potential abuse across 9 leading cloud providers,
serving as a foundational measurement reference for future im-
provements in the serverless ecosystem. While most studies focus
on performance and analyze a limited number of providers with-
out long-term observation, our research enables large-scale, cross-
provider data analysis over two years. Regarding the revealed abuse
risks, although some scenarios, like using proxies to circumvent
censorship, are similar to those in CDNs [35, 83], this study is the
#rst systematic examination of abuse cases within cloud functions,
demonstrating that serverless functions are increasingly becoming
a new infrastructure for malicious activities.

8 Conclusion
Through the analysis of passive DNS and the responses obtained
from active access to cloud functions, we conducted a systematic
measurement of the current state of the cloud function ecosystem.
Our study reveals signi#cant di!erences in the usage patterns and
practical infrastructure among various providers. Furthermore, we
conducted an initial analysis of potential abuse scenarios of cloud
functions, uncovering privacy risks from unauthorized access. We
identi#ed four distinct misuse scenarios through manual review,
revealing that 4.89% of these functions are being abused and have
signi#cant real-world impact. Furthermore, we have responsibly
disclosed the identi#ed abuse instances to the a!ected vendors
to help them recognize and mitigate the risks of cloud function
abuse. Additionally, based on our measurement #ndings, we o!ered
valuable insights for providers to enhance the management of their
serverless function o!erings.

Acknowledgments
We thank our shepherd and the anonymous reviewers for their
valuable feedback. This work is supported by the National Key Re-
search and Development Program of China (No. 2023YFC3321303),
National Natural Science Foundation of China (62102218, 62302258),
and Zhongguancun Laboratory. Baojun Liu and Yiming Zhang are
both the corresponding authors.

References
[1] Adjustment of the distribution model for free trial quotas of cloud functions.

2023-12. https://cloud.tencent.com.cn/document/product/583/73739.
[2] Aliyun Function Compute: A secure and stable, elastically scaled, O&M-free,

pay-as-you-go, serverless computing platform. [n. d.]. https://www.alibabacloud.
com/en/product/function-compute. (Access in October, 2024).

[3] Aliyun Service Agreement. [n. d.]. https://terms.aliyun.com/legal-
agreement/terms/suit_bu1_ali_cloud/suit_bu1_ali_cloud201802281451_
77479.html?spm=a2c4g.11186623.0.0.14686ad6jeyPNg. (Access in October, 2024).

[4] Amazon. [n. d.]. Amazon Simple Queue Service. https://aws.amazon.com/sqs/.
(Access in October, 2024).

[5] Announcing AWS Lambda Function URLs: Built-in HTTPS Endpoints for
Single-Function Microservices. 2022-04. https://aws.amazon.com/blogs/aws/
announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-
function-microservices/.

[6] Attack and Defend: Leveraging AWS Serverless Technology for End-to-End C2.
2022-9. https://www.youtube.com/watch?v=wl9GuvOFSKo.

[7] AWS Lambda randomly gives back 502 as status. [n. d.]. https://stackover$ow.
com/questions/49810775/aws-lambda-randomly-gives-back-502-as-status. (Ac-
cess in October, 2024).

[8] AWS Lambda: Run code without thinking about servers or clusters 2024-9. https:
//aws.amazon.com/lambda/.

[9] AWS Service Terms. [n. d.]. https://aws.amazon.com/cn/service-terms/. (Access
in October, 2024).

[10] Azure Functions: Execute event-driven serverless code with an end-to-end
development experience 2024-9. https://azure.microsoft.com/en-us/products/
functions.

[11] Baidu Cloud Function Compute [n. d.]. https://cloud.baidu.com/doc/CFC/index.
html. (Access in October, 2024).

[12] Baidu Cloud Service Agreement: User Rights and Obligations. [n. d.]. https:
//cloud.baidu.com/doc/Agreements/s/mjwvy1waw. (Access in October, 2024).

[13] Jack Cable, Drew Gregory, Liz Izhikevich, and Zakir Durumeric. 2021. Strato-
sphere: Finding vulnerable cloud storage buckets. In Proceedings of the 24th
International Symposium on Research in Attacks, Intrusions and Defenses. 399–
411.

[14] China Mobile. [n. d.]. https://www.chinamobileltd.com/en/global/home.php. (Ac-
cess in October, 2024).

[15] China Telecom. [n. d.]. https://www.chinatelecom-h.com/en/global/home.php.
(Access in October, 2024).

[16] China Unicom. [n. d.]. https://www.chinaunicom.com.cn/. (Access in October,
2024).

74

https://cloud.tencent.com.cn/document/product/583/73739
https://www.alibabacloud.com/en/product/function-compute
https://www.alibabacloud.com/en/product/function-compute
https://terms.aliyun.com/legal-agreement/terms/suit_bu1_ali_cloud/suit_bu1_ali_cloud201802281451_77479.html?spm=a2c4g.11186623.0.0.14686ad6jeyPNg
https://terms.aliyun.com/legal-agreement/terms/suit_bu1_ali_cloud/suit_bu1_ali_cloud201802281451_77479.html?spm=a2c4g.11186623.0.0.14686ad6jeyPNg
https://terms.aliyun.com/legal-agreement/terms/suit_bu1_ali_cloud/suit_bu1_ali_cloud201802281451_77479.html?spm=a2c4g.11186623.0.0.14686ad6jeyPNg
https://aws.amazon.com/sqs/
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://aws.amazon.com/blogs/aws/announcing-aws-lambda-function-urls-built-in-https-endpoints-for-single-function-microservices/
https://www.youtube.com/watch?v=wl9GuvOFSKo
https://stackoverflow.com/questions/49810775/aws-lambda-randomly-gives-back-502-as-status
https://stackoverflow.com/questions/49810775/aws-lambda-randomly-gives-back-502-as-status
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/cn/service-terms/
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://cloud.baidu.com/doc/CFC/index.html
https://cloud.baidu.com/doc/CFC/index.html
https://cloud.baidu.com/doc/Agreements/s/mjwvy1waw
https://cloud.baidu.com/doc/Agreements/s/mjwvy1waw
https://www.chinamobileltd.com/en/global/home.php
https://www.chinatelecom-h.com/en/global/home.php
https://www.chinaunicom.com.cn/

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

[17] Cisco Umbrella Passive DNS. 2024-9. https://docs.umbrella.com/investigate/docs/
passive-dns.

[18] Cloud Functions (2nd gen) is now the default choice in the Google Cloud console
user interface on August 29, 2023. 2023-08. https://cloud.google.com/functions/
docs/release-notes#August_29_2023.

[19] Cloud Functions has released Cloud Functions on February 14, 2022.
2022-02. https://cloud.google.com/functions/docs/release-notes#February_14_
2022(2ndgen).

[20] Cloud$are 2024-9. https://www.cloud$are.com/.
[21] CNCF Serverless Whitepaper v1.0 2018-9. https://github.com/cncf/wg-serverless/

tree/master/whitepapers/serverless-overview.
[22] Marcin Copik, Roman Böhringer, Alexandru Calotoiu, and Torsten Hoe$er. 2023.

Fmi: Fast and cheap message passing for serverless functions. In Proceedings of
the 37th International Conference on Supercomputing. 373–385.

[23] Jakub Czyz, Mark Allman, Jing Zhang, Scott Iekel-Johnson, Eric Osterweil, and
Michael Bailey. 2014. Measuring ipv6 adoption. In Proceedings of the 2014 ACM
Conference on SIGCOMM. 87–98.

[24] Datadog. 2023. The state of serverless. https://www.datadoghq.com/state-of-
serverless/.

[25] Ali Davanian, Michail Faloutsos, and Martina Lindorfer. 2024. C2Miner: Tricking
IoT Malware into Revealing Live Command & Control Servers. In Proceedings
of the 19th ACM Asia Conference on Computer and Communications Security.
112–127.

[26] Eyal De Lara, Carolina S Gomes, Steve Langridge, S Hossein Mortazavi, and
Meysam Roodi. 2016. Hierarchical serverless computing for the mobile edge. In
2016 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 109–110.

[27] Deprecation overview. [n. d.]. https://cloud.ibm.com/docs/openwhisk?topic=
openwhisk-dep-overview. (Access in October, 2024).

[28] EarlyBird. [n. d.]. https://github.com/americanexpress/earlybird. (Access in
October, 2024).

[29] Sou#an El Yadmani, Olga Gadyatskaya, and Yury Zhauniarovich. 2024. The File
That Contained the Keys Has Been Removed: An Empirical Analysis of Secret
Leaks in Cloud Buckets and Responsible Disclosure Outcomes. In 2025 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 9–9.

[30] Function timeout. [n. d.]. https://cloud.google.com/functions/docs/con#guring/
timeout. (Access in October, 2024).

[31] Function URL Overview. 2023-08. https://cloud.tencent.com/document/product/
583/96099.

[32] Google. [n. d.]. Google Pub/Sub. https://cloud.google.com/pubsub?hl=en. (Access
in October, 2024).

[33] Google Cloud Platform/SecOps Terms of Service. [n. d.]. https://cloud.google.
com/terms/. (Access in October, 2024).

[34] Google Cloud Run Functions (formerly known as Cloud Functions) 2024-9. https:
//cloud.google.com/functions.

[35] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao Zhang, Haixin Duan, Tao
Wan, Jian Jiang, Shuang Hao, and Yaoqi Jia. 2018. Abusing CDNs for fun and
pro#t: Security issues in CDNs’ origin validation. In 2018 IEEE 37th Symposium
on Reliable Distributed Systems (SRDS). IEEE, 1–10.

[36] Adam Hall and Umakishore Ramachandran. 2019. An execution model for
serverless functions at the edge. In Proceedings of the International Conference
on Internet of Things Design and Implementation. 225–236.

[37] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. Serverless
computation with {OpenLambda}. In 8th USENIX workshop on hot topics in
cloud computing (HotCloud 16).

[38] Hispasec Sistemas Company. [n. d.]. Virus Total. https://www.virustotal.com/
gui/home/search. (Access in October, 2024).

[39] How can the HTTP timeout for function computing be set to a longer duration?
[n. d.]. https://developer.aliyun.com/ask/571611. (Access in October, 2024).

[40] How do I troubleshoot HTTP 502 and HTTP 500 status code (server-side) er-
rors from AWS Lambda? [n. d.]. https://repost.aws/knowledge-center/lambda-
troubleshoot-invoke-error-502-500. (Access in October, 2024).

[41] How much do the top-ranking dating apps really make? Let’s take a
look at their pro#t-making tactics. [n. d.]. https://www.163.com/dy/article/
F9UGKSLL051181GK.html. (Access in October, 2024).

[42] IBM Cloud Functions: Functions-as-a-Service (FaaS) platform based on Apache
OpenWhisk. [n. d.]. https://cloud.ibm.com/functions/. (Access in October, 2024).

[43] Introduction of Kingsoft Function URL. 2022-08. https://docs.ksyun.com/
documents/42034.

[44] Is there a risk in hiring someone to top up an OpenAI API account? Could
the account be banned? 2024-04. https://chatgptboke.com/is-there-any-risk-in-
#nding-someone-to-recharge-openai-api.html.

[45] Wayne Jansen, Tim Grance, et al. 2011. Guidelines on security and privacy in
public cloud computing. (2011).

[46] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,
Jianfeng Wang, and Adam Barker. 2023. How does it function? characterizing
long-term trends in production serverless workloads. In Proceedings of the 2023
ACM Symposium on Cloud Computing. 443–458.

[47] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. 2001. DNS
performance and the e!ectiveness of caching. In Proceedings of the 1st ACM
SIGCOMMWorkshop on Internet Measurement. 153–167.

[48] Daniel Kelly, Frank G Glavin, and Enda Barrett. 2021. Denial of wallet—de#ning
a looming threat to serverless computing. Journal of Information Security and
Applications 60 (2021), 102843.

[49] Erin Kenneally and David Dittrich. 2012. The menlo report: Ethical principles
guiding information and communication technology research. Available at SSRN
2445102 (2012).

[50] Beom Heyn Kim and David Lie. 2015. Caelus: Verifying the consistency of cloud
services with battery-powered devices. In 2015 IEEE Symposium on Security and
Privacy. IEEE, 880–896.

[51] Kingsoft Cloud Function [n. d.]. https://www.ksyun.com/nv/product/KCF. (Ac-
cess in October, 2024).

[52] Kingsoft Cloud Service Agreement. [n. d.]. https://docs.ksyun.com/documents/
42028?type=3. (Access in October, 2024).

[53] Ralph LaBarge and Thomas McGuire. 2013. Cloud penetration testing. arXiv
preprint arXiv:1301.1912 (2013).

[54] Lambda Function URL is throwing 502. [n. d.]. https://repost.aws/questions/
QU85XAcFFZRR-xatC-RhwfAQ/lambda-function-url-is-throwing-502. (Access
in October, 2024).

[55] Xiaojing Liao, Sumayah Alrwais, Kan Yuan, Luyi Xing, XiaoFeng Wang, Shuang
Hao, and Raheem Beyah. 2016. Lurking malice in the cloud: Understanding and
detecting cloud repository as a malicious service. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 1541–1552.

[56] Xiaojing Liao, Chang Liu, Damon McCoy, Elaine Shi, Shuang Hao, and Raheem
Beyah. 2016. Characterizing long-tail SEO spam on cloud web hosting services. In
Proceedings of the 25th International Conference onWorldWideWeb. 321–332.

[57] David H Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt. 2023. Doing
more with less: Orchestrating serverless applications without an orchestrator. In
20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). 1505–1519.

[58] Mingxuan Liu, Yiming Zhang, Baojun Liu, Zhou Li, Haixin Duan, and Donghong
Sun. 2021. Detecting and characterizing SMS spearphishing attacks. In
Proceedings of the 37th Annual Computer Security Applications Conference.
930–943.

[59] Yijing Liu, Yiming Zhang, Baojun Liu, Haixin Duan, Qiang Li, Mingxuan Liu,
Ruixuan Li, and Jia Yao. 2024. Tickets or Privacy? Understand the Ecosystem of
Chinese Ticket Grabbing Apps. In 33rd USENIX Security Symposium (USENIX
Security 24). 5107–5124.

[60] MasterCard DNS Error Went Unnoticed for Years [n. d.]. https://krebsonsecurity.
com/2025/01/mastercard-dns-error-went-unnoticed-for-years/. (Access in
March, 2025).

[61] McAfee Webadvisor. [n. d.]. https://www.mcafee.com/en-us/safe-browser/
mcafee-webadvisor.html. (Access in October, 2024).

[62] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: Design, im-
plementation, and performance. In 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). IEEE, 405–410.

[63] Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms.
arXiv preprint arXiv:1109.2378 (2011).

[64] Antonio Nappa, Zhaoyan Xu, M Zubair Ra#que, Juan Caballero, and Guofei Gu.
2014. CyberProbe: Towards Internet-Scale Active Detection of Malicious Servers..
In NDSS.

[65] Oracle Cloud Functions [n. d.]. https://www.oracle.com/cloud/cloud-native/
functions/. (Access in October, 2024).

[66] Passive DNS historical internet database: Farsight DNSDB. 2024-9. https://www.
farsightsecurity.com/solutions/dnsdb/.

[67] QAX - The O"cial Cyber Security Services and Anti-Virus Software Sponsor
of the Olympic and Paralympic Winter Games Beijing 2022. [n. d.]. https://en.
qianxin.com/. (Access in October, 2024).

[68] Serverless Cloud Computing: Are there actually No Servers? 2023-06. https:
//chaoskyle.com/serverless-cloud-computing.

[69] Serverless Cloud Function Market. [n. d.]. https://www.linkedin.com/pulse/
serverless-cloud-function-market-data-dive-research-analysis-paazc/. (Access
in October, 2024).

[70] ServerlessC2. 2022-9. https://github.com/hackerob/ServerlessC2.
[71] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Ba-

tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX annual technical
conference (USENIX ATC 20). 205–218.

[72] Paulo Silva, Daniel Fireman, and Thiago Emmanuel Pereira. 2020. Prebaking func-
tions to warm the serverless cold start. In Proceedings of the 21st International
Middleware Conference. 1–13.

[73] Josef Spillner. 2019. Quantitative analysis of cloud function evolution in the AWS
serverless application repository. arXiv preprint arXiv:1905.04800 (2019).

[74] Davide Taibi, Nabil El Ioini, Claus Pahl, and Jan Raphael Schmid Niederko$er.
2020. Patterns for serverless functions (function-as-a-service): A multivocal

75

https://docs.umbrella.com/investigate/docs/passive-dns
https://docs.umbrella.com/investigate/docs/passive-dns
https://cloud.google.com/functions/docs/release-notes#August_29_2023
https://cloud.google.com/functions/docs/release-notes#August_29_2023
https://cloud.google.com/functions/docs/release-notes#February_14_2022%20(2nd%20gen)
https://cloud.google.com/functions/docs/release-notes#February_14_2022%20(2nd%20gen)
https://www.cloudflare.com/
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://github.com/cncf/wg-serverless/tree/master/whitepapers/serverless-overview
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-dep-overview
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-dep-overview
https://github.com/americanexpress/earlybird
https://cloud.google.com/functions/docs/configuring/timeout
https://cloud.google.com/functions/docs/configuring/timeout
https://cloud.tencent.com/document/product/583/96099
https://cloud.tencent.com/document/product/583/96099
https://cloud.google.com/pubsub?hl=en
https://cloud.google.com/terms/
https://cloud.google.com/terms/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://www.virustotal.com/gui/home/search
https://www.virustotal.com/gui/home/search
https://developer.aliyun.com/ask/571611
https://repost.aws/knowledge-center/lambda-troubleshoot-invoke-error-502-500
https://repost.aws/knowledge-center/lambda-troubleshoot-invoke-error-502-500
https://www.163.com/dy/article/F9UGKSLL051181GK.html
https://www.163.com/dy/article/F9UGKSLL051181GK.html
https://cloud.ibm.com/functions/
https://docs.ksyun.com/documents/42034
https://docs.ksyun.com/documents/42034
https://chatgptboke.com/is-there-any-risk-in-finding-someone-to-recharge-openai-api.html
https://chatgptboke.com/is-there-any-risk-in-finding-someone-to-recharge-openai-api.html
https://www.ksyun.com/nv/product/KCF
https://docs.ksyun.com/documents/42028?type=3
https://docs.ksyun.com/documents/42028?type=3
https://repost.aws/questions/QU85XAcFFZRR-xatC-RhwfAQ/lambda-function-url-is-throwing-502
https://repost.aws/questions/QU85XAcFFZRR-xatC-RhwfAQ/lambda-function-url-is-throwing-502
https://krebsonsecurity.com/2025/01/mastercard-dns-error-went-unnoticed-for-years/
https://krebsonsecurity.com/2025/01/mastercard-dns-error-went-unnoticed-for-years/
https://www.mcafee.com/en-us/safe-browser/mcafee-webadvisor.html
https://www.mcafee.com/en-us/safe-browser/mcafee-webadvisor.html
https://www.oracle.com/cloud/cloud-native/functions/
https://www.oracle.com/cloud/cloud-native/functions/
https://www.%20farsightsecurity.com/solutions/dnsdb/
https://www.%20farsightsecurity.com/solutions/dnsdb/
https://en.qianxin.com/
https://en.qianxin.com/
https://chaoskyle.com/serverless-cloud-computing
https://chaoskyle.com/serverless-cloud-computing
https://www.linkedin.com/pulse/serverless-cloud-function-market-data-dive-research-analysis-paazc/
https://www.linkedin.com/pulse/serverless-cloud-function-market-data-dive-research-analysis-paazc/
https://github.com/hackerob/ServerlessC2

IMC ’25, October 28–31, 2025, Madison, WI, USA Yijing Liu et al.

literature review. (2020).
[75] Tencent Serverless Cloud Function Service Agreement. [n. d.]. https://cloud.

tencent.com/document/product/583/59194. (Access in October, 2024).
[76] Tencent Serverless Cloud Functions. [n. d.]. https://www.tencentcloud.com/

products/scf. (Access in October, 2024).
[77] Top 5 Serverless Platforms That Take O!. 2022-12. https://www.techmagic.co/

blog/top-serverless-platforms.
[78] Top Serverless Platforms in 2023. 2023-10. https://chrisbateson80.medium.com/

top-serverless-platforms-in-2023-2fde4104441d.
[79] Dmitrii Ustiugov, Plamen Petrov,Marios Kogias, Edouard Bugnion, and Boris Grot.

2021. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. 559–572.

[80] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios
Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020. {In#niCache}: exploit-
ing ephemeral serverless functions to build a {cost-e!ective} memory cache. In
18th USENIX conference on #le and storage technologies (FAST 20). 267–281.

[81] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the curtains of serverless platforms. In 2018 USENIX
annual technical conference (USENIX ATC 18). 133–146.

[82] Warning on Unauthorised Investment Firm/Investment Business Firm issued.
2018-10. https://www.centralbank.ie/news/article/warning-on-unauthorised-
investment-#rm-investment-business-#rm-issued8Oct2018.

[83] Mingkui Wei. 2021. Domain Shadowing: Leveraging Content Delivery Networks
for Robust {Blocking-Resistant} Communications. In 30th USENIX Security
Symposium (USENIX Security 21). 3327–3343.

[84] Wikipedia of ChatGPT [n. d.]. https://en.wikipedia.org/wiki/ChatGPT. (Access
in October, 2024).

[85] Qinge Xie, Shujun Tang, Xiaofeng Zheng, Qingran Lin, Baojun Liu, Haixin Duan,
and Frank Li. 2022. Building an Open, Robust, and Stable {Voting-Based} Domain
Top List. In 31st USENIX Security Symposium (USENIX Security 22). 625–642.

[86] Junjie Xiong, Mingkui Wei, Zhuo Lu, and Yao Liu. 2021. Warmonger: in$ict-
ing denial-of-service via serverless functions in the cloud. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security.
955–969.

[87] Yiming Zhang, Baojun Liu, Chaoyi Lu, Zhou Li, Haixin Duan, Shuang Hao, Mingx-
uan Liu, Ying Liu, Dong Wang, and Qiang Li. 2020. Lies in the air: Characterizing
fake-base-station spam ecosystem in china. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 521–534.

[88] Minqi Zhou, Rong Zhang, Wei Xie, Weining Qian, and Aoying Zhou. 2010. Se-
curity and privacy in cloud computing: A survey. In 2010 sixth international
conference on semantics, knowledge and grids. IEEE, 105–112.

A Ethics
Although our institution does not have an Institutional Review
Board (IRB), we proactively obtained approval from the organiza-
tion that served similar functions in our institution and strictly ad-
hered to ethical guidelines [49] throughout the experiment. Firstly,
for the passive DNS data collection, the data we used contained
no personally identi#able information. Speci#cally, #elds such as
client IP addresses were excluded from our dataset. Secondly, for
the active access to serverless functions, to minimize the impact
on the function owner, we did not collect any function code and
limited our requests to fewer than three per function. Since most
providers o!er a free usage tier, our requests were unlikely to incur
signi#cant charges for the function owners. We conducted tests
on our own cloud functions to ensure that the impact on function
owners was minimal. Additionally, on the servers initiating our
probe requests, we launched a web service on port 80. The site
provided an explanation of the experiment’s purpose, along with
the researcher’s contact information. We o!ered an opt-out option
for participants (cloud function owners), and if they opted out, we
would stop accessing their functions and discard all related data
to ensure it was not used for further analysis. Lastly, for the re-
turned content of functions, the responses from each active request

were securely stored locally. Considering that cloud functions may
contain sensitive data, as mentioned in Section 3.4, we identi#ed
and hashed the potentially sensitive data prior to large-scale anal-
ysis. Importantly, we did not analyze any sensitive information
directly, thereby mitigating the ethical risks. To reduce potential
harm and highlight the security implications, we reported identi#ed
abuse cases to the a!ected service providers and received positive
feedback from Tencent and AWS.

B Supplementary chart
The following are some supplementary #gures and tables provided
for a better understanding of the paper. As described in Section 5,
we identi#ed four types of cloud function abuse, including covert
C2 communication, hosting malicious websites, concealing illicit
services, and using egress nodes as IP proxies. Algorithm 1 shows
the implementation logic of a cloud function used to hide a C2
server, Figure 8 provides examples of gambling websites hosted
on cloud functions, and Table 4 exempli#es typical methods of
concealing illicit services via redirection.

Algorithm 1: Code Structure for Hiding C2 Servers
Input :HTTP request details
Output :Response from hidden C2 server

1 C2 ↓ !http://[C2_server_ip]:[port]!

2 path ↓ event[’path’]

3 headers ↓ event[’headers’]

4 params ↓ event[’queryString’]

5 body ↓ event[’body’]

6 if event[’httpMethod’] == ’GET’ then
7 resp ↓ GET(C2 + path, headers, params)

8 else
9 resp ↓ POST(C2 + path, body, headers, params)

10 response ↓ { !isBase64Encoded!: True, !statusCode!:

resp.status_code, !headers!: resp.headers, !body!:

base64_encode(resp.content) }

11 return response

Figure 8: Cloud functions can be used to host malicious web-
sites. The screenshots show the typical gambling sites on
cloud functions.

76

https://cloud.tencent.com/document/product/583/59194
https://cloud.tencent.com/document/product/583/59194
https://www.tencentcloud.com/products/scf
https://www.tencentcloud.com/products/scf
https://www.techmagic.co/blog/top-serverless-platforms
https://www.techmagic.co/blog/top-serverless-platforms
https://chrisbateson80.medium.com/top-serverless-platforms-in-2023-2fde4104441d
https://chrisbateson80.medium.com/top-serverless-platforms-in-2023-2fde4104441d
https://www.centralbank.ie/news/article/warning-on-unauthorised-investment-firm-investment-business-firm-issued8Oct2018
https://www.centralbank.ie/news/article/warning-on-unauthorised-investment-firm-investment-business-firm-issued8Oct2018
https://en.wikipedia.org/wiki/ChatGPT

Dive into the Cloud: Unveiling the (Ab)Usage of Serverless Cloud Function in the Wild IMC ’25, October 28–31, 2025, Madison, WI, USA

Table 4: Cloud functions can be exploited to promote illegal services, primarily by redirecting users to target domains. These
target domains may be generated either statically or dynamically, as shown in the examples.

Target Domains Examples

Static Display 1 location.href = !http :// dlcy.zeldalink.top/wlxcList.html!

Random Splicing 1 var Rand = Math.round(Math.random () * 999999)

2 location.href=!https ://!+Rand+!.yerbsdga.xyz!

Random Selection

1 const urls =[

2 'https :// polaris.zijieapi.com/luckycat/super_inviter/v1/invite_code /..',

3 'https :// www.bilibili.com/',

4 'https :// www.bilibili.com/',

5 'https :// www.bilibili.com/',]

6 const url = urls[Math.floor(Math.random () * urls.length)]

7 location.href = url

77

	Abstract
	1 Introduction
	2 Background
	2.1 Deployment
	2.2 Invocation
	2.3 Execution

	3 Methodology
	3.1 Function URL Format Definition
	3.2 Serverless Function Identification
	3.3 Active Information Collection
	3.4 Active Data Analysis
	3.5 Limitation

	4 Overall Usage Status
	4.1 Evolving Trend of Serverless Function
	4.2 Practical Ingress Infrastructure
	4.3 Invocation Pattern of Serverless Task
	4.4 Current Invocation Status

	5 Abuse Status
	5.1 Abuse I: Covert C2 Communication
	5.2 Abuse II: Hosting Malicious Websites
	5.3 Abuse III: Hidden Illicit Service
	5.4 Abuse IV: Egress Nodes Abuse
	5.5 Defense Gap of Serverless Abuse

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Ethics
	B Supplementary chart

