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Abstract
Transport Layer Security (TLS) is a cornerstone to secure Internet
communications. It requires proper deployment and validation of
certificate chains. During validation, clients must first construct the
chain from server-provided certificates. However, existing research
often integrates chain construction into the broader validation
process, lacking independent analysis of this crucial step.

This paper presents the first systematic assessment of certificate
chain construction, covering server-side deployment compliance
and client-side capabilities. On the server side, we summarized struc-
tural requirements from RFC standards and evaluated real-world
website compliance. We found that approximately 3% of Tranco Top
1M domains have deployed non-compliant chains, with common
issues including reversed sequences and incomplete chains. The
compliance would be influenced by HTTP server and Certificate Au-
thority checks and guidance during the configuration process. On
the client side, we evaluated 9 types of chain-building capabilities
across 8 mainstream TLS implementations, uncovering prevalent
deficiencies like inadequate backtracking and difficulties with long
chains. These deficiencies could compromise TLS security, causing
a fallback to insecure HTTP or making the service unavailable. Our
findings highlight critical gaps in current certificate chain prac-
tices. Based on our findings, we also propose recommendations for
improving the deployment and construction of certificate chains.

CCS Concepts
• Security and privacy → Web protocol security; • Networks
→ Network measurement.
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1 Introduction
Transport Layer Security (TLS) and Public Key Infrastructure (PKI)
are essential for secure and authenticated communication over the
Internet. Within TLS interactions, authenticating the peer entity
during the handshake is of great importance. Specifically, in the
“Server Hello” message, the server provides X.509 certificates to
the client, which the client then validates according to RFC stan-
dards [11]. The server is trusted only if the certificate chain is valid.

Due to the critical nature of certificate chain verification, ex-
tensive studies have examined the (HTTPS) deployment of web-
sites [8, 29, 42, 43] and validation issues on TLS clients [29, 38].
However, an important detail has been overlooked: the construc-
tion of the certificate chain. A structurally compliant chain should
include a leaf certificate, one or more intermediate certificates,
and a root certificate in the order of issuance. In practice, servers
only provide a list of certificates, leaving the client responsible
for constructing the certificate path before validation. Improper
chain construction can cause security issues. For example, in 2020,
the expiration of the AddTrust External CA Root certificate
caused many clients to fail to identify a valid certificate path, lead-
ing to the unavailability of numerous websites[39]. Besides, the
CVE-2024-0567 vulnerability identified that servers using GnuTLS,
like Cockpit, could experience disruptions when verifying client
certificates that included cyclic cross-signed certificates, potentially
resulting in a DoS attack [6].
Research gap. The RFC standards have acknowledged concerns
about certificate chain deployment and construction. TLS 1.2 [14]
imposes “structural” requirements for server-deployed certificate
chains, e.g., each certificate in the chain MUST directly authen-
ticate the preceding certificate. So far, no scalable measurements
have been conducted to evaluate real-world server-side compli-
ance with these requirements. Furthermore, TLS 1.3 [36] states that
non-compliant server deployments are prevalent, and requires the
clients to handle disorganized certificate chains. However, path
construction is inherently complex for clients, especially without
clear or standardized normative guidance. While RFC 4158 [12] (in-
formational document, not standard) offers suggestions for chain
construction, these suggestions are not mandatory. To date, there
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has been no systematic study of how TLS clients construct chains
in practice.
Research questions. In this paper, we conduct the first study on
the security implications of certificate chain construction issues,
focusing on server deployments and client-side certificate chain
construction. The research questions we aim to answer include:
(RQ1) How structurally compliant are certificate chains provided
by web servers in the wild? and (RQ2) Do mainstream TLS clients
have the capability of handling malformed (non-compliant) certifi-
cate chains, and what are the security impacts? We also expect to
provide suggestions on the practices for providing and constructing
certificate chains.
Our work. For server-side deployment evaluation, we first sum-
marized the “structural” requirements of certificate chains from
RFC standards and developed rules for compliance analysis. We
collected certificate chains from Tranco Top 1M domains [34, 41].
Our analysis revealed widespread non-compliance, affecting 2.9%
of Tranco Top domains. Primary issues included improper issuance
orders and incomplete chains (see Section 4). While these issues
may stem from configuration errors by network administrators,
we found that the checks and guidance provided by HTTP servers
and Certificate Authorities (CAs) during the configuration process
also matter. Automated checks could mitigate non-compliance (e.g.,
HTTP servers like Azure check duplicate leaf certificates), yet messy
guidelines further complicate configuration (e.g., CAs or resellers
like GoGetSSL provide users with certificates in reverse order).

For client-side evaluation, we first empirically analyzed the
chain-building logic of open-source TLS implementations (e.g.,
Chromium), and summarized 9 common chain-building capabilities
(see Table 2). We then designed targeted sample certificate chains
to test each capability and evaluated 8 mainstream TLS clients (4
browsers and 4 libraries). Our evaluation revealed that, except for
CryptoAPI, libraries typically underperform browsers (see Table 9).
Key deficiencies include missing basic capabilities such as AIA sup-
port, and the lack of prioritization features. Furthermore, through
differential testing, we demonstrated that real-world non-compliant
chains would fail validation due to deficiencies in client-side chain
construction, impacting service availability (see Section 5). Based on
these findings, we propose recommendations to improve the secu-
rity and reliability of certificate chain deployment and construction
(see Section 6).
Contributions. Our main contributions include:

• We conducted the first large-scale analysis from the perspec-
tive of structural compliance in server-side certificate chain
deployments.

• We evaluated the certificate chain construction capabilities
in mainstream TLS implementations and found significant
discrepancies and deficiencies.

• We provide recommendations to improve the compliance
and security of certificate chains.

2 Background
Public Key Infrastructure is a framework used to secure communi-
cations between entities through digital certificates. In this paper,
we focus on Web PKI, where clients validate X.509 certificates to

authenticate website entities during HTTPS connections. This sec-
tion introduces the fundamental concepts of X.509 certificates and
certificate chains, followed by an overview of existing research in
this domain.

2.1 Certificate Chain Validation
Web PKI mechanism. In the trust model of Web PKI, website
owners need to apply for certificates from publicly trusted Cer-
tificate Authorities (CAs), which would issue certificates in X.509
formats [11] after verifying the applicant’s identity (i.e., domain
ownership). For security and flexibility, CAs typically first use their
root certificates to issue intermediate certificates and then use the
intermediate ones to issue the entity (leaf) certificate. The leaf cer-
tificate, along with (one or more) intermediate certificates and the
root certificate, forms the certificate chain. During the TLS hand-
shake, the server would typically send the certificate chain to the
client via CertificateMessage [14]. Then, the client performs a
series of checks on the chain’s validity, e.g., the presence of the
root cert in trusted lists, expiration or revocation status, and host-
name matching, to ensure the trustworthiness of the server and the
security of the TLS connection.

Figure 1: Certification path processing

X.509 certificate. Standardized in RFC 5280 [11], an X.509 version
3 certificate includes basic fields such as the issuer, subject, validity
and a set of extensions. Key extensions that are relevant to chain
construction include: Subject Alternative Name (SAN), which spec-
ifies additional identities such as domain names and IP addresses;
the Subject Key Identifier (SKID), which uniquely identifies the
public key in the certificate and facilitates path construction; the
Authority Key Identifier (AKID), which identifies the public key
used to sign the certificate, typically by referencing the SKID of
the issuing CA or the issuer’s name and serial number; the Author-
ity Information Access (AIA), which provides access information
for obtaining the issuer’s certificate or checking certificate status;
and the Basic Constraints, which indicate whether the certificate
is issued to a Certificate Authority (CA) and define the maximum
certification path length.
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Certificate Chain. Notably, in practice, the Certificatemessage
just provides a list of certificates, which has not been guaranteed to
be a well-structured chain (i.e., from leaf to root in the exact order
of issuance). Although TLS 1.2 [14] requires the server to place
the entity certificate first, followed by certificates in their issuance
order (with the root certificate optionally omitted), real-world de-
ployments may still provide “messy” chains due to misconfigura-
tion [8, 42, 43]. Therefore, chain building, i.e., constructing a chain
of certificates to be verified based on the certificates provided by
the server, has become an inescapable task for TLS clients. TLS
1.3 [36] explicitly specifies that all TLS implementations SHOULD
be prepared to handle potentially extraneous certificates and arbi-
trary orderings. In this paper, we use certificate list to refer to the
list of certificates provided by the server via Certificatemessage,
and certificate path to denote the chain constructed from this list
by the client during the validation process.
Certificate validation. As discussed above, TLS clients cannot
directly validate the certificates provided by the server. They must
first construct a certificate path—a list of certificates starting with
the leaf and ending with the root, and all certificates follow the
issuance order. Therefore, the client-side certificate validation can
be considered to include two steps (as shown in Figure 1):

(1) Path construction involves assembling candidate certifi-
cation paths, where “candidate” highlights that while the
certificates may be correctly sequenced, the path may still
not meet other criteria, such as path length, name constraints,
or certificate policies.

(2) Path validation ensures that each certificate in the path
meets certain criteria: it must be within its validity period,
not revoked, and comply with any applicable constraints.

Currently, there is no unified standard for how TLS clients should
construct a certificate chain or for the relationship between chain
construction and validation. RFC 4158 [12], as an informational
document rather than a formal standard, provides recommendations
for chain construction, but the specific implementation is left to the
client. For instance, to expedite finding a valid certificate path, a
client might validate certain attributes (e.g., expiration date) during
the construction process.

2.2 Related Work
Security of server certificate chain deployment. In recent years,
numerous studies have been conducted to measure the Web PKI
ecosystem. Holz et al. [23] were among the first to conduct a large-
scale measurement and analysis of the HTTPS certificate ecosystem,
utilizing OpenSSL’s verify module to validate collected certificate
chains and analyze various errors. Subsequent research focused on
building large-scale certificate datasets [16, 25], detecting HTTPS
hijacking [17, 24], and other explorations. Measures to enhance
the security of Web PKI certificates, such as certificate revocation
mechanisms [27, 30] and Certificate Transparency [21, 37, 40], have
also been extensively measured and analyzed. Kumar et al. [28] as-
sessed the compliance of individual certificate contents, identifying
non-compliant practices during issuance by certification authorities.
Despite extensive research on the security of Web PKI certificates,
these studies have either focused on individual certificate content
or supplementary mechanisms, or they have “assumed” that the

server-provided chains are compliant and validated them accord-
ingly. There has never been a systematic assessment of whether
the server-provided chains meet the structural compliance require-
ments of TLS protocols.
Certificate verification issues. Security concerns during the cer-
tificate chain verification process have always been a hot topic in
PKI. Brubaker et al. [9] generated “frankencerts” through random
mutations to automate differential testing of certificate verifica-
tion issues in browsers and libraries. Sivakorn et al. [38] in their
HVLearn project focused on the “hostname” field of individual
certificates, using a black-box testing framework to identify non-
compliant behaviors in TLS implementations that could be exploited
for man-in-the-middle attacks. Non-browser software also has a
history of studies on TLS certificate verification issues. In 2012,
Georgiev et al. [19] manually identified prevalent certificate val-
idation errors in critical software that relied on various SSL/TLS
implementations. Pourali et al. [35] conducted a fine-grained at-
tribution of TLS certificate verification issues in Android systems,
uncovering certificate validation hijacking phenomena. While the
aforementioned studies focus on testing potential problems clients
might encounter during final certificate verification, and they do
not explore potential issues that may arise during the certificate
chain construction process.
Certificate chain construction. Only a few research papers di-
rectly address the process of certificate chain construction. In 2013,
Durumeric et al. [16] conducted a large-scale measurement of the
HTTPS ecosystem, mentioning the need to reorder and supplement
missing certificates in the validation section, but did not provide
specific technical details. Hiller et al. [22] developed a certificate
chain construction tool to study the relationships of cross-signed
certificates, aiming to traverse all viable certificate chains within
passive datasets (e.g., Censys [15] or CT logs [21]), though details
of the tool’s implementation and considerations for individual link
constructions were not provided. Zhang et al. [43] noted that server-
deployed certificate chains could be disordered or incomplete and
designed rules to locate root certificates within the chain, but did
not analyze methods for certificate chain construction. Debnath et
al. [13] attempted to create a certificate verification implementation
fully compliant with RFC standards; their Chain-Builder Module
identifies certificate issuance relationships using AKI.keyid and
SKI.keyid and could construct multiple candidate chains. However,
their approach lacks a detailed design for handling more complex
scenarios, such as missing intermediate certificates, ordering multi-
ple candidates, and whether to set attempt limits. Larisch et al. [29]
also used KeyID matching and subject/issuer DN to construct cer-
tificate chains, incorporating AIA to locate new certificates, but
did not consider complex scenarios either. To date, the only project
that examines the chain construction capabilities of TLS imple-
mentations is BetterTLS1 (2020). It evaluated whether clients reject
invalid certificates (e.g., expired or violating name constraints) and
select alternative valid chains. In other words, BetterTLS primar-
ily targets “validation correctness” rather than “decision-making
among multiple certificate paths”. Our study investigates a more
essential question: given multiple certificates, which one does the
client prefer for chain construction (i.e., priority preferences). We

1https://bettertls.com/
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also evaluate client behavior in more complex scenarios, such as
reversed certificate order or missing intermediate certificates. A
detailed comparison with BetterTLS is shown in Table 1. Overall,
our work provides a more systematic investigation into the chain
construction capabilities of TLS clients.

Table 1: Comparison of client certificate chain building capa-
bilities between BetterTLS and this work

Type BetterTLS This Work

Basic ORDER_REORGANIZATION × ✓
Capabilities REDUNDANCY_ELIMINATION × ✓

AIA_COMPLETION × ✓

EXPIRED ✓ ✓
NAME_CONSTRAINTS ✓ ×
BAD_EKU ✓ ×

Priority MISS_BASIC_CONSTRAINTS ✓ ×
Preferences NOT_A_CA ✓ ×

DEPRECATED_CRYPTO ✓ ×
BAD_PATH_LENGTH × ✓
BAD_KID × ✓
BAD_KU × ✓

Restriction PATH_LENGTH_CONSTRAINT × ✓
Settings SELF_SIGNED_LEAF_CERT × ✓

3 Methodology
This section outlines our research methodology. On the server side,
e conducted large-scale measurements to access the compliance
of deployed certificate chains from three aspects: leaf certificate
location, chain order, and chain integrity (based on RFC specifica-
tions [14, 36]). On the client side, we assessed the chain construction
capabilities and their potential security implications of mainstream
TLS implementations through heuristic construction of malformed
certificate chains and semi-automated differential testing.
Terminology. The TLS 1.2 standard (RFC 5246, Section 7.4.2) [14]
specifies three basic requirements for certificate chain deployment:
(1) The sender’s certificate MUST come first in the list; (2) Each
following certificate MUST directly certify the one preceding it; (3)
The root certificate MAY be omitted. TLS 1.3 (RFC 8446, Section
4.4.2) slightly relaxes the second rule [36], requiring only that each
certificate “shall” directly authenticate its predecessor. In this pa-
per, we define a “compliant” chain as one that fully conforms the
above three rules, i.e., (1) the end-entity certificate appear first in
the certificate list; (2) certificates are ordered by issuance relation-
ship; and (3) the certificate list includes all certificates required to
construct a complete chain except for the optional omission of the
root certificate.

Besides, as noted in TLS 1.3, servers may provide non-compliant
certificate chains, requiring clients to reconstruct the chain. For the
same non-compliant input, different clients may construct different
certificate paths, potentially leading to divergent validation results.
For a particular client, assuming that there are one or more certifi-
cate paths in a non-compliant certificate chain that can be verified
as valid by the client, and the client constructs any one of them, we
say that the client chooses a "correct" path. Conversely, if the client
only constructs other paths that lead to invalid results, we consider
the paths selected by the client to be "incorrect".

3.1 Server-Side Chain Deployment
This paper analyzes the certificate chain structure deployed by pop-
ular web servers to evaluate their compliance with TLS standards.
The data collection and analysis approaches are described below.
Data collection.We selected the certificates deployed by Tranco
Top 1M (ID is 833KV) [34] domains as our primary dataset. Using
ZGrab2 [3], we collected the certificate chains returned by their web
servers during the TLS handshake from two VPSs (in the United
States and Australia) in March 2024. During the scanning process,
we limited the scanning rate to below 500KB/s to prevent any ad-
verse effects on the servers and network. We further compared the
data collected under TLS 1.2 and TLS 1.3 and found that 98.8% of
the same domains received identical certificate chains. The remain-
ing discrepancies were primarily due to different servers handling
TLS 1.2 and TLS 1.3 requests, each deploying different certificates.
Manual inspection of these chains reveals minimal structural differ-
ences, such as having identical intermediate and root certificates
but differing only in the leaf certificate. Consequently, we chose to
use the certificates collected with TLS 1.2 as our research dataset.
With TLS 1.2, we obtained certificate data for 870,113 domains on
the US VPS and 867,374 domains on the Australian VPS separately.
The dataset we analyzed is a union of the two, containing a total
of 906,336 unique certificate chains and 861,747 unique certificates.
For domains with different certificate chains on two VPSs, we con-
sidered the server-side configuration to be non-compliant if one of
the VPSs was non-compliant.
Leaf certificate analysis.Although RFC 5246 [14] and RFC 8446 [36]
both require the leaf certificate (i.e., the server certificate in our
context) is correctly placed at the beginning of the certificate list,
they do not provide clear criteria for determining whether a given
certificate qualifies as a leaf. This omission is not addressed in RFC
5280 [11] either.

In this work, we utilize the Common Name (CN) and Subject
Alternative Name (SAN) fields of the certificate for determination.
Firstly, if the CN or SAN of the first certificate in the chain matches
the domain name, the chain would be classified as Correctly Placed
and Matched. If not, we further check if these fields are formatted
as domain names or IP addresses. If so, the chain is Correctly Placed
but Mismatched. Otherwise, we check the remaining certificates
in the chain and categorize them as Incorrectly Placed but Matched
or Incorrectly Placed and Mismatched, depending on whether any
certificate beyond the first matches the domain or follows the do-
main/IP format in its CN or SAN fields. All other cases are classified
as Other and will be reviewed manually.
Order of certificates. The key to checking this requirement is to
determine whether an issuance relationship exists between two
adjacent certificates in the chain. RFC 5280 [11] does not provide a
clear definition; however, previous studies [29, 43] have effectively
distilled three primary criteria if Certificate A issuing Certificate
B: (1) The public key of Certificate A must be able to verify the
signature of Certificate B; (2) The subject of Certificate A needs to
match the issuer field of Certificate B; (3) The Subject Key Identifier
(SKID) of Certificate A needs to match the Authority Key Identifier
(AKID) of Certificate B. In cases where a certificate may lack one of
these fields, compliance with the validation criteria is considered
fulfilled if either the second or third condition is met. This approach
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example

a compliant certificate chain

webcanny.com

b irrelevant certificates - multiple leaf certificates

btechcloud.com

c multiple paths and reversed sequences

archives.gov.tw

d duplicate certificates, irrelevant certificates and reversed sequences

Figure 2: Server-Side certificate chain topology (red: leaf certificate; blue: intermediate certificate; green: root certificate; gray:
duplicate certificate)

allows for some flexibility in handling certificates that might not
fully adhere to the typical structure but are still functionally secure
within the chain. Therefore, we can verify the issuance relationships
of certificates in a chain from front to back, determining if they are
orderly placed.

Since certificates can be out of order in various ways, such as
duplicates, reversed paths, or missing necessary certificates, we
use a topological graph to formally illustrate the issuance structure
of the certificate chains, which allows us to further classify and
understand differences between out-of-order types. Specifically,
we place the chain horizontally from left to right, as per the order
provided by the server. In a compliant deployment, the leftmost
certificate is the server (leaf) certificate, and the rightmost is either
the root certificate or an intermediate cert whose parent is the root.
We treat each certificate as one node. The node is denoted by 𝐶𝑝

(𝑝 ≥ 0), p indicating its position in the chain. For a certificate chain
containing four certificates (Figure 2a), it can be represented as:
𝐶0,𝐶1,𝐶2,𝐶3. Then we first check Duplicated Certificates, i.e., two
or more bit-for-bit identical certificates in one chain. Certificate
chains with duplicated certificates are definitely in violation of the
order requirement.

Subsequently, we analyze more complex scenarios using topo-
logical graphs. Considering that duplicate certificates can increase
the complexity of the issuance order, we keep only the first (i.e., the
leftmost one) of duplicate certificates when constructing the topo-
logical graph. We replace the original label of duplicated certificates
with 𝐶𝑝 [𝑖], where 𝑝 represents the position where the certificate
first appears, and 𝑖 indicates its 𝑖𝑡ℎ occurrence. As shown in Figure
2d, the node originally designated as ‘6’, due to its certificate dupli-
cating that of node ‘4’, is relabeled as ‘4[1]’. Based on the topological
graph, we can check Irrelevant Certificates (Figure 2b), i.e., one or
more certificates that cannot be connected to the leaf certificates
(𝐶0). Besides, we can find all paths in the graph that terminate at
leaf certificates. When the number of such paths exceeds one, we
classify it as Multiple Paths (Figure 2c). Finally, we check all paths
within the certificate chain to see if any issuer certificates appear
before their corresponding subject certificates. If such cases are
found, they are classified as Reversed Sequences (Figure 2c).

Certificate chain completeness analysis. Standards suggest that
root certificates may be omitted since clients are assumed capable
of supplementing them to complete the chain building. However, it
is not stated that other certificates, particularly intermediate certifi-
cates, can be omitted. Therefore, we check whether the certificate
chain includes all necessary intermediate certificates required for
chain building. Utilizing the topological graph, we identify all po-
tential chain paths. For the last certificate in each path, we make
the following assessments:

• If it is a self-signed certificate, we consider that there is at
least one complete certificate chain without an omitted root
certificate.

• If it is not a self-signed certificate, we search for its issuer
using its AKID/AIA fields. Specifically, we first check if the
certificate’s AKID matches the SKID of any certificates in the
root store from Mozilla [5], Microsoft [7], Chrome [1] and
Apple [26]. Next, we download the certificate issuer through
the AIA and then check if it is a self-signed certificate. The
AIA mechanism allows clients to retrieve missing issuer cer-
tificates via HTTP-accessible URIs specified in the “caIssuers”
field of the AIA extension. If the issuer cannot be found or
the direct issuer is not a self-signed certificate, we determine
that the certificate chain lacks the necessary intermediate
certificates2.

3.2 Client-Side Chain Construction
The relaxation of server-side certificate chain deployment require-
ments in TLS 1.3 increases the demands on client-side chain con-
struction capabilities, expecting clients to be prepared to handle
non-compliant chains. Although prior studies have examined vari-
ous problems in the chain verification of major browsers and TLS li-
braries [9, 17–19], they have treated “chain construction” and “chain
verification” as a unified process. The specific issues that occur dur-
ing the “chain construction” phase have not yet been systematically

2Here we use the concatenation of common root stores, so the incomplete chains
identified likely affect nearly all clients. Clients may experience more issues, depending
on the completeness of their specific root store.
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Table 2: Certificate chain construction capability test

# Capability Type Description Test Case (formal description)1

1 Order Reorganization Provide a chain with disordered certificates to test the
client’s construction capabilities.

{𝐸, 𝐼2, 𝐼1, 𝑅}

2 Redundancy Elimination Provide a chain containing irrelevant certificates to test
the client’s ability to eliminate redundancies.

{𝐸,𝑋, 𝐼, 𝑅}

3 AIA Completion Provide a chain missing intermediate certificates and test
if the client can use AIA to construct the chain correctly.

{𝐸, 𝐼1}
URI in 𝐼1’s AIA caIssuer point to 𝐼2

4 Validity Priority Priority decision among issuer certificates with differing
Validity periods.

{𝐸, 𝐼, 𝐼1, 𝐼2, 𝐼3, 𝑅}
𝐼 , 𝐼1, 𝐼2, and 𝐼3 have the same subject;
𝐼 ’s validity period is 1 year and is valid, 𝐼1 is invalid, 𝐼2’s
validity period is 1 year but is more recent, and 𝐼3 has
the same start date as 𝐼 but a validity period of 10 years.

5 KID Matching Priority Priority decision among issuer certificates with varying
KID statuses.

{𝐸, 𝐼, 𝐼1, 𝐼2, 𝑅}
𝐼 , 𝐼1, and 𝐼2 have the same subject;
𝐼 ’s KID matches, 𝐼1’s KID mismatches, and 𝐼2 lacks the
KID field.

6 KeyUsage Correctness Priority Priority decision among issuer certificates with differing
KeyUsage settings.

{𝐸, 𝐼, 𝐼1, 𝐼2, 𝑅}
𝐼 , 𝐼1, and 𝐼2 have the same subject;
𝐼 ’s KeyUsage is correct, 𝐼1’s KeyUsage is incorrect, and
𝐼2 lacks the KeyUsage field.

7 Basic Constraints Priority Priority decision based on correct or incorrect Path
Length constraints.

{𝐸, 𝐼1, 𝐼2, 𝐼3, 𝑅}
𝐼2 and 𝐼3 have the same subject and is 𝐼1’s issuer;
𝐼2’s path_length is correct and 𝐼3’s path_length is incor-
rect.

8 Path Length Constraint Maximum chain length the client can construct. {𝐸, 𝐼1, 𝐼2, . . . , 𝐼𝑛, 𝑅}
𝐼𝑛 is the issuer of 𝐼𝑛−1

9 Self-signed Leaf Certificate Whether the client allows a self-signed certificate as a
leaf in chain construction.

{𝐸𝑆, 𝐸, 𝐼 , 𝑅}
𝐸 and 𝐸𝑆 have the same subject but 𝐸𝑆 is self-signed.

1 E: End-entity certificate. I: Intermediate certificate. R: Root certificate. ES: Self-signed server certificate. X: Irrelevant certificate.

studied. In this work, we evaluate the chain construction capabil-
ities of 8 mainstream TLS clients, including 4 browsers (Chrome
(v128.0.6613.114), Firefox (v126.0), Microsoft Edge (v128.0.2739.54),
Safari (v17.4)) and 4 TLS libraries (OpenSSL (v3.0.2), MbedTLS
(v3.5.2), GnuTLS (v3.7.3), CryptoAPI (v10.0.19041.5072)).
Empirical analysis. Due to the lack of public information on the
chain construction process of TLS clients, we first conducted an
empirical study. We selected all open-source projects from the TLS
clients under study, including Chromium [10] (the open-source
project of Chrome), Mozilla NSS [32], OpenSSL [33], GnuTLS [20]
and MbedTLS [31], and analyze their source code to understand
the basic principles behind the process. Our analysis revealed that
all TLS clients use a forward construction approach, building the
path from the leaf certificate to a trust anchor. Notably, each im-
plementation employs a unique method for selecting the issuer of
the given certificate. For instance, Chromium prioritizes candidate
certificates by first checking for the Key Identifier (KID) match,
then evaluating whether the certificate is self-signed, and finally
comparing their validity. In contrast, OpenSSL, in addition to con-
sidering the subject name and KID, also checks if the signature
algorithms match and compares the validities of certificates. We
also found that TLS clients could vary in how they integrate chain
construction and validation processes. For example, OpenSSL com-
pletes the entire chain construction before conducting validation
checks. While MbedTLS performs “partial” validation during chain
construction, i.e., immediately verifying certificate signatures and

revocation status upon selecting the candidate certificate. Only
certificates that pass this validation will be added to the chain.
Construction capability test. Based on the empirical study, we
summarized a series of common principles for certificate chain con-
struction, as listed in Table 2. They can be categorized into three
types: basic capabilities (Type 1-3), which include order reorganiza-
tion, redundancy elimination, and AIA completion; priority prefer-
ences (Type 4-7), which assess if the client prioritizes certificates
based on specific attributes in scenarios where multiple candidate
certificates could serve as the potential issuer; and restriction settings
(Type 8-9), which cover limitations on chain length and whether
self-signed leaf certificates are permitted in chain construction. For
basic capabilities, we consider a client to possess the capability if
it successfully passes the validation. For each priority preferences
test, we generate multiple intermediate certificates with the same
subject field, but differing in certain other fields. By altering their
arrangement and observing the certificate chain constructed by the
client, we can infer its method of priority selection.
Real-world impact evaluation. After assessing client-side chain-
building capabilities and server-side deployment compliance, we
want to further evaluate whether current TLS clients can handle
real-world (potentially non-compliant) certificate chains and iden-
tify related security implications. We use the dataset described
in Section 3.1 for evaluation. As the chains collected from real
servers may have various configuration errors or structural non-
compliance, there is no standard answer for the validation results.
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Therefore, we use differential testing, i.e., comparing the differences
in the validation results across different TLS clients. The disparate
results are then manually analyzed to infer root causes and security
implications.

4 Server-Side Deployment
This section presents the results of structural compliance of server-
deployed certificate chains using the dataset mentioned in Sec-
tion 3.1.

4.1 Leaf Certificate Deployment
Our evaluation shows that leaf certificate deployment is widely
compliant with standards, i.e., locating as the first cert in the chain.
Of the 906,336 Tranco Top 1M domains, 838,354 (92.5%) are Cor-
rectly Placed and Matched, 62,536 (6.9%) are Correctly Placed but
Mismatched, 5,445 (0.6%) fall into theOther category, and only 1 was
Incorrectly Placed and Mismatched (see Table 3). It is mot.gov.ps,
which first certificate’s CN=SophosApplianceCertificate_xxx
(not in domain format), but the issuer is a self-signed certificate
with CN=www.mot.gov.ps (in domain format). We manually re-
viewed the Other category and found that these sites configured
certificates with empty CN fields or CNs indicating test use (e.g.,
Plesk3, localhost, testexp).

Overall, the compliance regarding the leaf cert location is notably
high. Our investigation into the checking mechanisms provided by
mainstream HTTP servers (see Table 4) during the configuration
process reveals that, since users must configure the private key (of
the server certificate), servers typically verify that the private key
corresponds to the first certificate in the list. Failure to match results
in an “SSL_CTX_use_PrivateKey failed” error. This verification may
contribute to the observed high compliance level.

Table 3: Leaf certificate deployment

Place Match #Tranco Top 1M domains

✓ ✓ 838,354 (92.5%)
✓ × 62,536 (6.9%)
× ✓ 0 (~0%)
× × 1 (~0%)

Other 5,445 (0.6%)

4.2 Issuance Order
We next analyzed whether certificates in the chain were placed
in their compliant issuance order. Using the topological method
introduced in Section 3.1, we found that even for Tranco Top 1M
domains, 16,952 (1.9%) domains had non-compliant certificate chain
ordering. Table 5 summarizes the four types of non-compliant de-
ployment.
Duplicate certificates. There are 5,974 (35.2%) chains containing
duplicate certificates, including 4,730 chains with duplicated leaf
certificates, 1,354 with duplicated intermediate certificates, and 401
with duplicated root certificates. Themaximum number of duplicate
3Plesk is a web hosting control panel, and a certificate with Plesk as the CN usually
signifies a self-signed certificate generated by default during testing or development.

certificates in a single chain is 26. Among the chains with duplicate
leaf certificates, 4,231 chains have two leaf certificates placed at the
front of the chain. No common pattern was observed for duplicate
intermediate or root certificates. However, we identified 4 servers
(ns3.link, ns3.com, ns3.cx, n0.eu) with a similar topology: a
leaf certificate followed by two intermediate certificates (Let’s
Encrypt, CN=R3, and ISRG Root X1), forming a certificate path.
These two intermediate certificates are then duplicated repeatedly,
ultimately resulting in chains containing up to 29 certificates.

We speculate that these duplications stem from the specific con-
figuration features of HTTP servers. We use Nmap [2] to finger-
print the server applications by referring to the Server field in the
HTTP headers. The results (Table 10 in Appendix B) revealed that
duplicated certificate rates were notably higher for Apache servers.
We further investigate the mainstream HTTP servers, focusing on
their certificate deployment mechanisms, such as automatic certifi-
cate management support, required certificate fields, and potential
issues during deployment (e.g., mismatches between the leaf certifi-
cate and private key, or the presence of duplicate certificates). We
manually deployed problematic certificate chains to observe how
different HTTP servers respond (e.g., whether error messages are
returned), and cross-validated the deployment results by accessing
the websites directly. Detailed results are presented in Table 4. We
found that Apache (prior to version 2.4.8) and AWS ELB require
two separate files for certificates: SSLCertificateFile (for the
end-entity certificate only) and SSLCertificateChainFile (for
intermediate and root certificates). Users may misunderstand the
usages of these two files and include leaf certificates in SSLCertif
icateChainFile, causing duplicates. Apache updated to use the
same approach as Nginx after version 2.4.8, placing the complete
chain directly in one file, which may mitigate the misconfiguration.
In contrast, Microsoft-Azure-Application-Gateway checks for du-
plicate leaf certificates during certificate upload, providing a more
robust configuration.

Duplicate certificates may not directly cause client chain con-
struction errors but can lead to excessively long chains, exceeding
the maximum length limit supported by TLS clients (see Section 5.1,
e.g., GnuTLS). Besides, clients like MbedTLS do not eliminate dupli-
cate certificates, which may increase resource consumption during
the build process.
Irrelevant certificates. 3,032 (17.9%) certificate chains deployed
by the Top 1M domains contain irrelevant certificates, i.e., certifi-
cates with no direct or indirect issuing relationship to the leaf cert.
Duplicate certificates are not counted.

We analyzed different scenarios of irrelevant certificates. First,
225 chains contain unrelated self-signed certificates, i.e., root cer-
tificates that have no issuing relationship with leaf certificates. Of
the 159 certificate chains identified, each has a leaf certificate that
is self-signed and originates from non-authoritative CAs, which
should ideally terminate the chain. However, the servers have also
deployed additional, irrelevant root certificates from public CAs.
Secondly, 444 chains contain multiple distinct leaf certificates, and
only one of them would be used for chain building. Among these,
338 chains have multiple leaf certificates differing only in validity
periods, likely because the outdated certificates are not removed
during updates. For example, the servers for webcanny.com (illus-
trated in Figure 2b) deploy 5 leaf certificates from the same CA
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Table 4: Characteristics of SSL certificates deployed across different HTTP servers

Deployment Characteristics Apache Nginx Microsoft-Azure-
Application-Gateway

IIS AWS ELB

Automatic Certificate Management ✓ ✓ ✓ ✗ ✓

Supported Certificate Fields
<2.4.8 SF1
>=2.4.8 SF2

SF2 SF3 SF3 SF1

Private Key and Leaf Certificate Matching Check ✓ ✓ ✓ ✓ ✓

Duplicate Leaf Certificate Check ✗ ✗ ✓ ✓ ✗

Duplicate Intermediate/Root Certificate Check ✗ ✗ ✗ ✗ ✗

SF1 : CertificateFile.pem, Ca-bundle.pem, Privkey CertificateFile.pem - Contains only the leaf certificate.
SF2 : FullChain.pem, Privkey Ca-bundle.pem - Contains only intermediate/root certificates.
SF3 : CertificateFile.pfx Fullchain.pem - Contains the complete certificate chain.

Privkey - The private key.
CertificateFile.pfx - A PFX-formatted certificate chain.

Table 5: Chains with non-compliant issuance order

Type #Tranco Top 1M domains

Duplicate Certificates 5,974 (35.2%)
Irrelevant Certificates 3,032 (17.9%)

Multiple Paths 246 (1.5%)
Reversed Sequences 8,566 (50.5%)

Total 16,952

(Sectigo RSA Domain Validation Secure Server CA). The va-
lidity of these certificates ranges from 3 months to 1 year, spanning
2019 to 2024. They are arranged with the most recent on the left,
progressively moving to older certificates towards the right.

Finally, we identified 840 certificate chains with irrelevant cer-
tificates that had issuance relationships with each other, i.e., they
appeared to be (part of) another chain. For instance, the Taiwan
government site archives.gov.tw (Figure 2d) includes a primary
chain of certificates from nodes 0–3, with ePKI Root Certificate
Authority as the final CA. However, the server also provides cer-
tificates 4–9. Cert 7 is a CA certificate (TWCA Global Root CA)
commonly used in Taiwanese government sites, and others are
intermediate certificates issued by it. One possible reason for this
is that multiple domains are managed by the same administrator
(who holds multiple CAs and intermediate CAs).

While irrelevant certificates do not impede chain construction,
they can result in excessively long chains. This may exceed client
limits (See Section 5.1) or consume additional resources through
unnecessary chain construction attempts.
Multiple paths. A total of 246 (1.5%) chains have more than one
path, with up to three paths observed. Of these, 241 certificate
chains were caused by cross-signed certificates, as illustrated in Fig-
ure 2c, where node 2 and node 3 have the same subject (USERTrust
RSA Certification Authority) and SKID but different issuers.
Additionally, another 5 certificate chains were caused by the pres-
ence of several intermediate certificates with identical subject
and issuer but differing validity periods. Cross-signed certificates,
while increasing availability by providing multiple paths when
the server cannot determine the client’s trusted root certificate,
can also introduce complexity. Notably, we identified 29 certifi-
cate chains containing expired cross-signed certificates, indicating

current management flaws for timely renewing cross-signed cer-
tificates by website administrators.

We acknowledge that, in practical deployments, multiple paths
caused by cross-signed certificates may be intentionally provided
to enhance reliability by offering clients multiple chain construc-
tion options. It is important to note that the existence of multiple
paths due to cross-signing does not necessarily imply a violation
of the chain compliance requirements. In Figure 2c, a compliant
chain order can be achieved simply by reordering the certificates
(e.g., swapping node 2 and node 3 to follow the issuance order).
Despite this possibility, since the server does not provide the cer-
tificates in the correct issuance order, we still classify this case as
non-compliant. In contrast, there are more complex cross-signing
topologies, such as those involving three distinct issuers or multiple
layers of cross-signing, it may be impossible to satisfy the issuance-
order requirement through any reordering. Such cases should be
considered as exceptions and excluded from the non-compliance
classification. Upon manual inspection, we did not find such cases
in our dataset, so our measurement results are not affected.

Overall, the presence of multiple paths increases the complex-
ity of certificate chain construction. Without robust backtracking
capabilities or comprehensive prioritization settings, clients risk
constructing incorrect certificate chains. This issue will be further
evaluated in Section 5.
Reversed sequences. The reversed order is the most prevalent
issue of non-compliance. We found 8,566 (50.5%) chains of Top
1M domains contained at least one path in reversed order, and
8,370 had all paths reversed. Among them, the reversed order of
chains containing multiple paths is mostly due to the inappropriate
insertion positions of cross-signed certificates. For example, in
Figure 2c, node 2 is a cross-signed certificate. Placing it after node 3
maintains the compliant issuance order and avoids a reversed path.
However, it was discovered that the server placed it before node 3.

Besides, there are 8,365 certificate chains that have only one
path but still have the order reversed. We identified the two most
common chain path structures: 1->2->0 (5,248 chains) and 1->2-
>3->0 (1,769 chains). We suspect that the issue is related to the
certificate files provided by different CAs or their resellers during
the issuance process. In Table 11 (see Appendix C), We documented
the number of non-compliant certificate chains issued by various
CAs or their resellers and found that GoGetSSL, cyber_Folks S.A.,
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Table 6: Characteristics of SSL certificates issued by different CAs or resellers

Issuance Characteristics Let’s Encrypt ZeroSSL GoGetSSL Trustico cyber_Folks S.A.

Automatic Certificate Management ✓ ✓ ✗ ✗ ✗

Provide Fullchain File ✓ ✗ ✗ ✗ ✗

Provide Ca-bundle File ✓ ✓ ✓ ✓ ✓

Provide Root Certificate ✗ ✗ ✗ ✓ ✓

Compliant Issuance Order in Ca-bundle File ✓ ✓ ✗ ✗ ✗

Provide Certificate Installation Guide ✓ ✓ ✗ ✗ only Apache/IIS

and Trustico have a high incidence of reversed sequences. To
further investigate the root cause, we applied for an SSL certificate
from these CAs or resellers and discovered that it provides two files:
one containing only the leaf certificate and another containing the
required intermediate and root certificates in reverse order (see
Table 6). When administrators receive these two files, they may
simply merge them without altering the order of the (intermediate)
root certificates, leading to a reversed path.

For clients (e.g., MbedTLS) without the ability to reorder cer-
tificates, a certificate chain with reversed sequences will directly
result in verification failure (See Section 5.1).

Table 7: Completeness of certificate chain

Type #Tranco Top 1M domains

Complete Chain w/ Root 79,144 (8.7%)
Complete Chain w/o Root 815,105 (89.9%)

Incomplete Chain 12,087 (1.3%)

4.3 Completeness of Certificate Chain
We also evaluated whether the certificate lists (chains) provided
by Tranco Top 1M domains contain all the necessary certificates
to form a complete path. Our definition of completeness requires
that the certificate path either include the root certificate or that
the immediate issuer of the final intermediate certificate is a root
certificate. For the latter case, in practical scenarios, clients need
to complete the chain by retrieving the root certificate themselves.
To avoid overstating related issues, we assume that clients support
AIA fetching and use a unified root store that combines Mozilla,
Chrome, Microsoft, and Apple. Under this assumption, the collected
chains can be classified into three categories: (complete) chains
that contain both the intermediate and the root certificate (79,144
(8.7%)), chains that contain intermediate but omit the root certificate
(815,105 (89.9%)), and chains that lack intermediate certificates and
therefore cannot directly form a complete path (12,087 (1.3%)). It
can be seen that omitting the root certificate is a common practice.
The last type is considered non-compliant. Of them, we found 8,729
(72.2%) chains were missing a single intermediate certificate, which
could be fixed by adding the missing cert. While the remaining
chains were missing more than one intermediate certificate.

The AIA mechanism is designed to resolve the issue of missing
certificates. Ideally, the issuer certificate for a particular certificate
can be dynamically downloaded via the URI in the AIA field of its
content. Among the 12,087 certificate chains that lack necessary

Table 8: Additional incomplete chains in Tranco Top 1M
domains due to differences in root stores and AIA support
across various TLS clients

Root Store Mozilla Chrome Microsoft Apple

AIA Supported 66 66 5 4
AIA Not Supported 225,608 225,608 225,538 225,360

intermediate certificates, we found that 11,419 (94.5%) chains can be
completed by recursively downloading certificates from AIA. How-
ever, there are also cases where AIA fields are missing (579 chains),
URI access fails (88 chains), or the certificates retrieved through
AIA are not the correct issuers (1 chain). For example, the cer-
tificate located at the AIA URI (http://www.CAcert.org/class3.crt)
for CAcert Class 3 Root is the certificate itself, not its issuing
authority CA Cert Signing Authority. Additionally, dynami-
cally downloading certificates via AIA can have security risks, as
the primary downloading method is HTTP, which may be suscep-
tible to man-in-the-middle attacks and would also raise privacy
concerns [4].

As mentioned above, the incomplete chains identified here rep-
resent a lower bound. In practice, clients often rely on a single root
store and may lack AIA support, resulting in more chains being
deemed incomplete. Table 8 quantifies the additional incomplete
chains in Tranco Top 1M, for clients using individual root stores
with or without AIA. Each column corresponds to a specific root
store. The results indicate that root store differences have a limited
impact for clients when AIA is supported. AIA capability plays a
more critical role for achieving chain completeness.

Summary of server-side evaluation: We found that there is a
general structural non-compliance in the current server-side certifi-
cate chain deployment, affecting 26,361 (2.9%) of Top 1M domains.
Among them, the violation of the placement of issuance order
(64.3%) and missing necessary intermediate certificates (45.9%) are
the main non-compliant behaviors. Although the primary cause
is misconfiguration by domain administrators, our survey showed
that the configuration features/guidance provided by HTTP servers
and Certificate Authorities also matter. No clear configuration guid-
ance from CAs (or even providing certificates in reverse order) can
exacerbate this issue. While automated checks by HTTP servers
during configuration can effectively mitigate this problem, such
checks are currently far from fully implemented.
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Table 9: Differences in the capabilities of TLS implementations

Type OpenSSL GnuTLS MbedTLS CryptoAPI Chrome Microsoft Edge Safari Firefox

Order Reorganization ✓ ✓ × ✓ ✓ ✓ ✓ ✓
Redundancy Elimination ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

AIA Completion × × × ✓ ✓ ✓ ✓ ×
Validity Priority VP1 VP1 VP2 VP2 VP2 VP2 VP1

KID Matching Priority KP1 KP1 KP2 KP2 KP2 KP1
KeyUsage Correctness Priority KUP KUP KUP KUP KUP KUP

Basic Constraints Priority BP BP BP BP BP BP
Path Length Constraint >52 =16 =10 =13 >52 =21 >52 =8

Self-signed Leaf Certificate × × ✓ × × × ✓ ×
✓ - Supported × - Not Supported - No priority ordering

VP1 - Selects the first valid cert. VP2 - Prioritizes most recent, then longest validity among valid certs.
KP1 - KID match/absence prioritized over mismatch. KP2 - KID match prioritized over absence and mismatch.
KUP - Correct/missing KeyUsage prioritized over incorrect. BP - Correct basic constraints prioritized.

5 Client-Side Capability
Section 4 demonstrated that real-world servers do not yet strictly ad-
here to certificate structural requirements in RFC [14, 36], imposing
additional demands on client-side abilities to construct certificate
paths. This section presents testing results on client-side chain
construction and uses differential testing to reveal the impact of
server-side non-compliance and client-side deficiencies.

5.1 Capabilities of TLS Implementations
Using the methodology outlined in Section 3, we summarized 9
types of common certificate chain-building capabilities and de-
signed targeted test samples for evaluation.
Overall evaluation. The results for mainstream browsers and TLS
libraries are listed in Table 9. It is apparent that libraries (aside from
CryptoAPI) generally perform worse than browsers, mainly due to
the lack of basic chain construction capabilities like AIA completion.
Although Firefox also lacks AIA completion, it compensates by
caching intermediate certificates to complete the chain.
Differences in priority choices. We observed that all TLS imple-
mentations prioritize specific fields in certificates when selecting
issuer certificates to construct a chain. Still, there are differences in
the priority choices and processing logic among implementations.
For example, in the KID matching priority test, MbedTLS and Firefox
do not differentiate by priority and simply select the first certificate.
In contrast, clients including OpenSSL, GnuTLS, and Safari, treat
missing and mismatched KID fields with equal priority, while other
clients prioritize missing KID over mismatches. These differences
in priority settings can lead to variations in the certificate chains
constructed by different clients.

5.2 Real-World Impact
We conduct differential testing on the libraries and browsers men-
tioned in Section 3.2 using certificate chains deployed by servers.
This evaluation aims to assess the real-world impacts caused by
non-compliant server deployments and deficiencies in client capa-
bilities.
Result overview. The test dataset is our collection of 906,336
certificate chains. We specifically focused on the results of 26,361
non-compliant chains. Among them, 61.1% passed the validation

in all 3 browsers (we excluded Safari for it cannot retrieve specific
certificate chain validation error messages in the same way as the
other browsers), and 47.4% passed the validation in all 4 libraries.
This gap highlights the impact of chain-building capabilities on
validation. After excluding network-related issues, 3,295 chains
showed discrepancies across browsers, while 10,804 chains exhib-
ited inconsistencies across libraries. We manually reviewed the
cases to investigate the underlying causes of discrepancies. The
validation issues due to structural problems of certificate chains are
summarized below.
I-1: the lack of order reorganization capability.We identified 51 certifi-
cate chains where MbedTLS could not correctly find the issuer cer-
tificates due to their not being deployed in the issuance order, result-
ing in MbedTLS reporting an error (X509_BADCERT_NOT_TRUSTED)
unlike the other three clients which successfully constructed the
certificate path, impacting the validation of 22 websites of Taiwan
governments.
I-2: inability to process overly long chains. Experimental results re-
vealed that GnuTLS fails to build and validate 10 certificate chains
due to the number of certificates deployed exceeding its maximum
limit of 16. Unlike other clients, GnuTLS imposes a limit on the
number of certificates in the original list rather than the maximum
length of the constructed chain. Consequently, if a server deploys
multiple irrelevant or duplicate certificates, validation may fail. As
illustrated in Figure 3, the correct chain should be 8->1->16->0.
However, the construction and validation fail as ‘16’ exceeds the
length limit of GnuTLS.

Figure 3: Certificate list of assiste6.serpro.gov.br. The red
arrow indicates the certificate path.

I-3: the lack of backtracking ability. We identified a case where
OpenSSL, GnuTLS, and MbedTLS, lacking backtracking capabili-
ties, constructed incorrect certificate chains. The certificate chain
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topology deployed by moex.gov.tw (Figure 4) presents three can-
didate paths; nodes 1 and 4 are root certificates, but node 1 is not
included in any of the four trust stores discussed in Section 3.1.
Both OpenSSL and GnuTLS incorrectly included node 1 (paths 1
or 2), while CryptoAPI correctly selected path 3 by backtracking
after detecting that node 1 is not trusted. MbedTLS also produced
path 3, but only because it lacks reordering capability. When we
swapped the order of nodes 1 and 2, MbedTLS also included node 1
in the construction path.

Figure 4: Certificate list of moex.gov.tw

I-4: the lack of AIA completion capability. In our differential tests
across libraries, we found that 8,553 certificate chains could be con-
structed successfully by CryptoAPI but failed in the other three
libraries. This is likely because CryptoAPI supports AIA fetching.
To confirm this, we disabled AIA in the CryptoAPI validation code,
which led to 8,373 (97.9%) of the chains failing to construct (the
remaining chains could be fetched from the Windows system’s
Intermediate Certificate Store). In browser differential tests, we
discovered 1,074 certificate chains for which Edge and Chrome
showed consistent results (date_invalid/OK/domain mismatch),
while Firefox marked them as SEC_ERROR_UNKNOWN_ISSUER. This
discrepancy is likely due to Firefox relying on intermediate certifi-
cate caching rather than AIA fetching.

Besides, Chrome and Edge showed more consistent results than
Firefox in both capability and differential testing, probably due to
their shared Chromium engine, unlike the Firefox Gecko engine,
which relies on NSS for handling secure communication.

Summary of client-side evaluation: We identified discrepancies
and deficiencies in the chain construction capabilities ofmainstream
TLS implementations, where libraries (excluding CryptoAPI) gener-
ally underperform compared to browsers in both basic capabilities
and priority selection. Given the widespread non-compliance of
certificate chains on real-world servers, the deficiency in chain-
building capabilities can lead to validation failures. For TLS libraries,
this typicallymeans an inability to establish a TLS connection, while
for browsers, it results in warning pages that impact service avail-
ability. For Tranco 1M websites, 40.9% certificate chains encounter
building issues in TLS libraries, and for browsers, the percentage is
12.5%, highlighting a notable impact on the availability of network
services.

6 Discussion
In this section, we propose improvements for both the server side
and the client side, as well as provide guidance for other involved
parties. We also discuss the limitations of this study.

6.1 Server-Side Recommendation
Our analysis showed that the compliance of certificate chain de-
ployment could be improved by clear instructions from CAs and
thorough checks and reminders from HTTP servers. Therefore, we
propose the following recommendations.
For Certificate Authorities: Provide users with complete and
compliant certificate chains accompanied by detailed deployment
instructions, such as specifying the placement of files on common
server configurations.
For HTTP servers: Implement automated checks during certifi-
cate deployment to identify and resolve common errors, such as
detecting and removing duplicate certificates.
For web administrators: Beyond carefully following CA and
server guidelines, adopting automated certificate management solu-
tions (e.g., already offered by major CAs like Let’s Encrypt) can
simplify the process. Automation not only ensures compliant de-
ployment but also facilitates automatic certificate renewal, reducing
the risk of non-compliant configurations.

6.2 Client-Side Recommendation
This section proposes recommendations for client-side chain con-
struction based on our experimental findings.
Construction capability. As shown in Section 5.2, the most crit-
ical factor affecting a client’s ability to construct valid certificate
chains is to complete missing certificates (effecting 8,373 Top 1M
domains). This can be achieved through AIA fetching or alternative
mechanisms such as those adopted by Firefox. In addition, back-
tracking, which allows the client to attempt an alternative path
when the initially constructed chain is invalid, is also important.
Order reorganization, which enables the client to correctly process
certificates presented in a disordered sequence, further contributes
to construction. Our empirical results show that clients equipped
with all three capabilities exhibit a significantly higher success rate
in validating server certificate chains.
Prioritization. We also provide practical recommendations on
prioritization strategies when multiple candidate issuer certificates
are available. A primary consideration is KID matching. Clients
typically begin by identifying issuers whose subject_DN matches
the issuer_DN of the current certificate. To further ensure the cryp-
tographic correctness, we recommend that candidates be prioritized
based on KID matching in the following order: match >empty >mis-
match. When both subject_DN and KID match, clients may still
encounter multiple candidates. We identified 785 such chains for
Tranco 1M domains. The most common scenario, observed in 744
chains, involves an intermediate certificate and a self-signed root
certificate that share the same subject_DN and KID. Notably, all of
the root certificates in these cases are present in the trusted root
store. To reduce unnecessary chain construction attempts and im-
prove efficiency, we recommend prioritizing the trusted self-signed
root certificate when available. The remaining 42 chains involve
multiple intermediate certificates that differ only in validity peri-
ods. Examples of these certificates are provided in Figure 5. In such
cases, the most recently issued certificate should be preferred, as
it is more likely to reflect the current configuration of the issuing
authority.
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Figure 5: Priority selection cases

6.3 Limitations
First, our primary analysis and research in this paper focus on the
more popular domains within the Tranco Top 1M list. It is possi-
ble that less popular domains may exhibit a higher prevalence of
non-compliant deployments, potentially leading to more profound
certificate chain construction security issues. Nevertheless, we dis-
covered that even among these popular domains, about 3% exhibit
non-compliant deployments (Section 4), leading to discrepancies in
1,440 (5.6%) certificate chains during differential testing in various
libraries (Section 5). Besides, although we employed a heuristic
approach to construct test cases for malformed certificate chains, it
may not have covered all possible scenarios, such as the impacts of
caching, certificate policies, and certificate revocation. These fac-
tors do indeed influence the certificate chain construction process;
however, their variability and unpredictability make them difficult
to capture comprehensively. Therefore, our study only provides
insights into the worst-case scenarios. Moreover, the differential
testing method used to assess real-world impacts might suffer from
false positives, where all TLS implementations exhibit the same
behavior, which could inaccurately reflect an erroneous condition.

7 Conclusion
This paper presents the first comprehensive assessment of certifi-
cate chain construction, covering both server-side deployments
and client-side capabilities. We found that 2.9% of popular domains
exhibit non-compliant deployments. Significant deficiencies were
also found in client-side chain construction capabilities, including
missing basic capabilities and inappropriate prioritization, which
could impact network service availability. Based on our findings,
we recommend improvements to both deployment practices and
construction logic.
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A Ethics
When assessing server-side deployment compliance, we utilize
domain data from publicly available datasets. During our scans of

domain servers, we implement rate control, ensuring that the data
transfer does not exceed 500KB/s to prevent any negative impact on
the availability of the domain servers or the network. Additionally,
we take care to avoid conducting multiple consecutive scans on a
single server, further minimizing any potential disruption to server
operations.
Vulnerability disclosure. The issue of inconsistent certificate
chain length limits in GnuTLS has been reported to the GnuTLS
team. We have also contacted the CAs or resellers (GoGetSSL,cy
ber_FolksS.A., and Trustico) that provided the ca-bundle file
with certificates in the non-compliant issuance order. Trustico does
not consider the certificate order to be problematic. It states that
users can manually rearrange the certificates if necessary. However,
our measurements show that expecting users to understand cer-
tificate chain configuration and make manual adjustments is often
ineffective in practice.

B HTTP Servers for Non-Compliant Chains
As briefly noted in Section 4.2, we used Nmap to gather statistics
on HTTP servers associated with non-compliant certificate chains.
Table 10 lists the top 6 HTTP servers and the percentage of their
usage across each type of non-compliance. We found that most web-
sites currently use Apache and Nginx for deployment. Additionally,
it is evident that chains deployed on Azure rarely encounter issues
with duplicate certificates, particularly there are no instances of du-
plicate leaf certificates. From our practical experience, Azure checks
certificate chain files upon upload to ensure that exactly one leaf
certificate matches the private key. For cloudflare, it offers a fully
automated certificate chain deployment service, which typically
prevents non-compliant deployments. Therefore, we hypothesize
that the non-compliant deployments indicated in the table result
from using Advanced Certificate Manager, which allows for upload-
ing custom user certificates.

C Certificate Authorities for Non-Compliant
Chains

In addition to analyzing the usage of HTTP servers, we also ex-
amined the relationship between CAs and non-compliant deploy-
ments. We selected 8 CAs or resellers based on market share, non-
compliance rate, and certificate issuance costs (see Table 11). We
found that Let’s Encrypt has the highest issuance rate while
maintaining the lowest rate of non-compliant deployments, largely
due to its automated certificate issuance and deployment implemen-
tation. For GoGetSSL, cyber_Folks S.A., and Trustico, which
exhibit a higher proportion of non-compliant deployments, we
have confirmed that the disorderly arrangement of intermediate
and root certificates in the provided ca-bundle file leads to a high
proportion of reversed sequences. On the other hand, TAIWAN-CA’s
non-compliance is primarily due to incomplete chain. The main
issue appears to be the omission of an intermediate certificate (sub-
ject = TWCA Global Root CA, issuer = TWCA Root Certification
Authority) in their deployments.
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Table 10: HTTP servers used by domains with non-compliant certificate chains

Non-compliant Type Apache Nginx Azure 1 cloudflare IIS AWS ELB Other Total

Overview 6,482 (39.7%) 5,826 (35.7%) 901 (5.5%) 537 (3.3%) 488 (3.0%) 375 (2.3%) 1,714 (10.5%) 16,323

Duplicate Certificates 2,179 (56.1%) 876 (22.6%) 9 (0.2%) 131 (3.4%) 74 (1.9%) 217 (5.6%) 396 (10.2%) 3,882
Duplicate Leaf 2,086 (63.3%) 548 (16.6%) 0 (0.0%) 106 (3.2%) 57 (1.7%) 201 (6.1%) 300 (9.1%) 3,298
Duplicate Intermediate 104 (16.6%) 328 (52.4%) 9 (1.4%) 26 (4.2%) 34 (5.4%) 9 (1.4%) 116 (18.5%) 626
Duplicate Root 42 (16.4%) 121 (47.3%) 5 (2.0%) 5 (2.0/%) 33 (12.9%) 12 (4.7%) 38 (14.8%) 256

Irrelevant Certificates 1,023 (53.0%) 633 (32.8%) 18 (0.9%) 65 (3.4%) 29 (1.5%) 27 (1.4%) 135 (7.0%) 1,930
Irrelevant Leaf 220 (72.6%) 49 (16.2%) 0 (0.0%) 4 (1.3%) 11 (3.6%) 5 (1.7%) 14 (4.6%) 303

Multiple Paths 38 (32.5%) 59 (50.4%) 0 (0.0%) 3 (2.6%) 3 (2.6%) 1 (0.9%) 13 (11.1%) 117

Reversed Sequences 1,219 (23.1%) 2,015 (38.2%) 750 (14.2%) 171 (3.2%) 210 (4.0%) 139 (2.6%) 764 (14.5%) 5,268

Incomplete Chain 2,633 (39.6%) 2,689 (40.4%) 145 (2.2%) 202 (3.0%) 199 (3.0%) 117 (1.8%) 669 (10.1%) 6,654
1 Microsoft-Azure-Application-Gateway

Table 11: CAs or resellers for non-compliant certificate chains

Type Let’s encrypt Digicert Sectigo Limited ZeroSSL GoGetSSL TAIWAN-CA cyber_Folks S.A. Trustico 1

Non-compliant 4,620 (1.2%) 4,784 (7.9%) 5,118 (10.7%) 209 (2.5%) 270 (16.7%) 248 (50.4%) 94 (66.2%) 71 (65.7%)

Duplicate Certificates 3,259 (0.8%) 771 (1.3%) 639 (1.3%) 86 (1.0%) 41 (2.5%) 7 (1.4%) 3 (2.1%) 1 (0.9%)
Irrelevant Certificates 400 (0.1%) 726 (1.2%) 496 (1.0%) 35 (0.4%) 34 (2.1%) 8 (1.6%) 8 (5.6%) 1 (0.9%)
Multiple Paths 51 (∼0.0%) 6 (∼0.0%) 134 (0.3%) 0 (0.0%) 7 (0.4%) 0 (0.0/%) 0 (0.0%) 0 (0.0%)
Reversed Sequences 81 (∼0.0%) 1,736 (2.9%) 2,537 (5.3%) 2 (∼0.0%) 125 (7.7%) 47 (9.6%) 86 (60.6%) 67 (62.0%)
Incomplete Chain 1,155 (0.3%) 2,245 (3.7%) 1,998 (4.2%) 120 (1.5%) 112 (6.9%) 206 (41.9%) 8 (5.6%) 4 (3.7%)

Total 400,737 60,894 48,042 8,219 1,617 492 142 108
1 The Trustico Group Ltd
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